結果

問題 No.1086 桁和の桁和2
ユーザー QCFiumQCFium
提出日時 2020-01-21 20:19:37
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 2,904 bytes
コンパイル時間 1,756 ms
コンパイル使用メモリ 170,072 KB
実行使用メモリ 5,504 KB
最終ジャッジ日時 2024-07-02 23:37:03
合計ジャッジ時間 6,384 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 5
other AC * 10 WA * 21
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
int ri() {
int n;
scanf("%d", &n);
return n;
}
#define MOD 1000000007
template<int mod>
struct ModInt{
int x;
ModInt():x(0){}
ModInt(long long y):x(y>=0?y%mod:(mod-(-y)%mod)%mod){}
ModInt &operator+=(const ModInt &p){
if((x+=p.x)>=mod)x-=mod;
return *this;
}
ModInt &operator-=(const ModInt &p){
if((x+=mod-p.x)>=mod)x-=mod;
return *this;
}
ModInt &operator*=(const ModInt &p){
x=(int)(1LL*x*p.x%mod);
return *this;
}
ModInt &operator/=(const ModInt &p){
*this*=p.inverse();
return *this;
}
ModInt &operator^=(long long p){
ModInt res = 1;
for (; p; p >>= 1) {
if (p & 1) res *= *this;
*this *= *this;
}
return *this = res;
}
ModInt operator-()const{return ModInt(-x);}
ModInt operator+(const ModInt &p)const{return ModInt(*this)+=p;}
ModInt operator-(const ModInt &p)const{return ModInt(*this)-=p;}
ModInt operator*(const ModInt &p)const{return ModInt(*this)*=p;}
ModInt operator/(const ModInt &p)const{return ModInt(*this)/=p;}
ModInt operator^(long long p)const{return ModInt(*this)^=p;}
bool operator==(const ModInt &p)const{return x==p.x;}
bool operator!=(const ModInt &p)const{return x!=p.x;}
explicit operator int() const { return x; } // added by QCFium
ModInt operator=(const int p) {x = p; return ModInt(*this);} // added by QCFium
ModInt inverse()const{
int a=x,b=mod,u=1,v=0,t;
while(b>0){
t=a/b;
a-=t*b;
std::swap(a,b);
u-=t*v;
std::swap(u,v);
}
return ModInt(u);
}
friend std::ostream &operator<<(std::ostream &os,const ModInt<mod> &p){
return os<<p.x;
}
friend std::istream &operator>>(std::istream &is,ModInt<mod> &a){
long long x;
is>>x;
a=ModInt<mod>(x);
return (is);
}
};
typedef ModInt<MOD> mint;
struct MComb {
std::vector<mint> fact;
std::vector<mint> inversed;
MComb(int n) { // O(n+log(mod))
fact = std::vector<mint>(n+1,1);
for (int i = 1; i <= n; i++) fact[i] = fact[i-1]*mint(i);
inversed = std::vector<mint>(n+1);
inversed[n] = fact[n] ^ (MOD-2);
for (int i = n - 1; i >= 0; i--) inversed[i]=inversed[i+1]*mint(i+1);
}
mint ncr(int n, int r) {
return (fact[n] * inversed[r] * inversed[n-r]);
}
mint npr(int n, int r) {
return (fact[n] * inversed[n-r]);
}
mint nhr(int n, int r) {
assert(n+r-1 < (int)fact.size());
return ncr(n+r-1, r);
}
};
int main() {
int n = ri();
int64_t l[n], r[n];
int d[n];
for (auto &i : l) std::cin >> i;
for (auto &i : r) std::cin >> i;
for (auto &i : d) i = ri();
int i = 0;
for (; i < n; i++) if (d[i]) break;
if (i == n) puts("1"), exit(0);
for (int j = i; j < n; j++) if (!d[j]) puts("0"), exit(0);
for (int j = n - 1; j > i; j--) d[j] = (d[j] + 9 - d[j - 1]) % 9;
d[i] %= 9;
// WA... I guess
mint res = 1;
for (int j = i; j < n; j++) res *= (((mint(10) ^ r[j]) - (mint(10) ^ l[j])) / 9 + (!d[j] && (!j || d[j - 1])));
std::cout << res << std::endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0