結果
問題 | No.1086 桁和の桁和2 |
ユーザー |
![]() |
提出日時 | 2020-01-21 20:19:37 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,904 bytes |
コンパイル時間 | 1,756 ms |
コンパイル使用メモリ | 170,072 KB |
実行使用メモリ | 5,504 KB |
最終ジャッジ日時 | 2024-07-02 23:37:03 |
合計ジャッジ時間 | 6,384 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 5 |
other | AC * 10 WA * 21 |
ソースコード
#include <bits/stdc++.h>int ri() {int n;scanf("%d", &n);return n;}#define MOD 1000000007template<int mod>struct ModInt{int x;ModInt():x(0){}ModInt(long long y):x(y>=0?y%mod:(mod-(-y)%mod)%mod){}ModInt &operator+=(const ModInt &p){if((x+=p.x)>=mod)x-=mod;return *this;}ModInt &operator-=(const ModInt &p){if((x+=mod-p.x)>=mod)x-=mod;return *this;}ModInt &operator*=(const ModInt &p){x=(int)(1LL*x*p.x%mod);return *this;}ModInt &operator/=(const ModInt &p){*this*=p.inverse();return *this;}ModInt &operator^=(long long p){ModInt res = 1;for (; p; p >>= 1) {if (p & 1) res *= *this;*this *= *this;}return *this = res;}ModInt operator-()const{return ModInt(-x);}ModInt operator+(const ModInt &p)const{return ModInt(*this)+=p;}ModInt operator-(const ModInt &p)const{return ModInt(*this)-=p;}ModInt operator*(const ModInt &p)const{return ModInt(*this)*=p;}ModInt operator/(const ModInt &p)const{return ModInt(*this)/=p;}ModInt operator^(long long p)const{return ModInt(*this)^=p;}bool operator==(const ModInt &p)const{return x==p.x;}bool operator!=(const ModInt &p)const{return x!=p.x;}explicit operator int() const { return x; } // added by QCFiumModInt operator=(const int p) {x = p; return ModInt(*this);} // added by QCFiumModInt inverse()const{int a=x,b=mod,u=1,v=0,t;while(b>0){t=a/b;a-=t*b;std::swap(a,b);u-=t*v;std::swap(u,v);}return ModInt(u);}friend std::ostream &operator<<(std::ostream &os,const ModInt<mod> &p){return os<<p.x;}friend std::istream &operator>>(std::istream &is,ModInt<mod> &a){long long x;is>>x;a=ModInt<mod>(x);return (is);}};typedef ModInt<MOD> mint;struct MComb {std::vector<mint> fact;std::vector<mint> inversed;MComb(int n) { // O(n+log(mod))fact = std::vector<mint>(n+1,1);for (int i = 1; i <= n; i++) fact[i] = fact[i-1]*mint(i);inversed = std::vector<mint>(n+1);inversed[n] = fact[n] ^ (MOD-2);for (int i = n - 1; i >= 0; i--) inversed[i]=inversed[i+1]*mint(i+1);}mint ncr(int n, int r) {return (fact[n] * inversed[r] * inversed[n-r]);}mint npr(int n, int r) {return (fact[n] * inversed[n-r]);}mint nhr(int n, int r) {assert(n+r-1 < (int)fact.size());return ncr(n+r-1, r);}};int main() {int n = ri();int64_t l[n], r[n];int d[n];for (auto &i : l) std::cin >> i;for (auto &i : r) std::cin >> i;for (auto &i : d) i = ri();int i = 0;for (; i < n; i++) if (d[i]) break;if (i == n) puts("1"), exit(0);for (int j = i; j < n; j++) if (!d[j]) puts("0"), exit(0);for (int j = n - 1; j > i; j--) d[j] = (d[j] + 9 - d[j - 1]) % 9;d[i] %= 9;// WA... I guessmint res = 1;for (int j = i; j < n; j++) res *= (((mint(10) ^ r[j]) - (mint(10) ^ l[j])) / 9 + (!d[j] && (!j || d[j - 1])));std::cout << res << std::endl;return 0;}