結果
問題 | No.955 ax^2+bx+c=0 |
ユーザー | square1001 |
提出日時 | 2020-01-30 20:57:03 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 4 ms / 2,000 ms |
コード長 | 19,440 bytes |
コンパイル時間 | 2,902 ms |
コンパイル使用メモリ | 127,104 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-16 03:51:52 |
合計ジャッジ時間 | 6,097 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
testcase_33 | AC | 2 ms
5,376 KB |
testcase_34 | AC | 4 ms
5,376 KB |
testcase_35 | AC | 4 ms
5,376 KB |
testcase_36 | AC | 4 ms
5,376 KB |
testcase_37 | AC | 4 ms
5,376 KB |
testcase_38 | AC | 4 ms
5,376 KB |
testcase_39 | AC | 3 ms
5,376 KB |
testcase_40 | AC | 4 ms
5,376 KB |
testcase_41 | AC | 4 ms
5,376 KB |
testcase_42 | AC | 4 ms
5,376 KB |
testcase_43 | AC | 4 ms
5,376 KB |
testcase_44 | AC | 4 ms
5,376 KB |
testcase_45 | AC | 4 ms
5,376 KB |
testcase_46 | AC | 4 ms
5,376 KB |
testcase_47 | AC | 4 ms
5,376 KB |
testcase_48 | AC | 3 ms
5,376 KB |
testcase_49 | AC | 4 ms
5,376 KB |
testcase_50 | AC | 4 ms
5,376 KB |
testcase_51 | AC | 4 ms
5,376 KB |
testcase_52 | AC | 4 ms
5,376 KB |
testcase_53 | AC | 4 ms
5,376 KB |
testcase_54 | AC | 4 ms
5,376 KB |
testcase_55 | AC | 3 ms
5,376 KB |
testcase_56 | AC | 4 ms
5,376 KB |
testcase_57 | AC | 4 ms
5,376 KB |
testcase_58 | AC | 3 ms
5,376 KB |
testcase_59 | AC | 3 ms
5,376 KB |
testcase_60 | AC | 2 ms
5,376 KB |
testcase_61 | AC | 2 ms
5,376 KB |
testcase_62 | AC | 4 ms
5,376 KB |
testcase_63 | AC | 4 ms
5,376 KB |
testcase_64 | AC | 2 ms
5,376 KB |
testcase_65 | AC | 4 ms
5,376 KB |
testcase_66 | AC | 2 ms
5,376 KB |
testcase_67 | AC | 4 ms
5,376 KB |
testcase_68 | AC | 2 ms
5,376 KB |
testcase_69 | AC | 4 ms
5,376 KB |
testcase_70 | AC | 4 ms
5,376 KB |
testcase_71 | AC | 2 ms
5,376 KB |
testcase_72 | AC | 2 ms
5,376 KB |
testcase_73 | AC | 4 ms
5,376 KB |
testcase_74 | AC | 4 ms
5,376 KB |
testcase_75 | AC | 2 ms
5,376 KB |
testcase_76 | AC | 2 ms
5,376 KB |
testcase_77 | AC | 4 ms
5,376 KB |
testcase_78 | AC | 3 ms
5,376 KB |
testcase_79 | AC | 4 ms
5,376 KB |
testcase_80 | AC | 2 ms
5,376 KB |
testcase_81 | AC | 4 ms
5,376 KB |
testcase_82 | AC | 2 ms
5,376 KB |
testcase_83 | AC | 2 ms
5,376 KB |
testcase_84 | AC | 2 ms
5,376 KB |
testcase_85 | AC | 2 ms
5,376 KB |
testcase_86 | AC | 2 ms
5,376 KB |
testcase_87 | AC | 2 ms
5,376 KB |
testcase_88 | AC | 2 ms
5,376 KB |
testcase_89 | AC | 2 ms
5,376 KB |
testcase_90 | AC | 2 ms
5,376 KB |
testcase_91 | AC | 2 ms
5,376 KB |
testcase_92 | AC | 2 ms
5,376 KB |
testcase_93 | AC | 2 ms
5,376 KB |
testcase_94 | AC | 2 ms
5,376 KB |
testcase_95 | AC | 2 ms
5,376 KB |
testcase_96 | AC | 2 ms
5,376 KB |
testcase_97 | AC | 2 ms
5,376 KB |
testcase_98 | AC | 2 ms
5,376 KB |
testcase_99 | AC | 2 ms
5,376 KB |
testcase_100 | AC | 2 ms
5,376 KB |
testcase_101 | AC | 2 ms
5,376 KB |
testcase_102 | AC | 2 ms
5,376 KB |
testcase_103 | AC | 2 ms
5,376 KB |
testcase_104 | AC | 2 ms
5,376 KB |
testcase_105 | AC | 2 ms
5,376 KB |
testcase_106 | AC | 2 ms
5,376 KB |
testcase_107 | AC | 2 ms
5,376 KB |
testcase_108 | AC | 2 ms
5,376 KB |
testcase_109 | AC | 2 ms
5,376 KB |
testcase_110 | AC | 2 ms
5,376 KB |
testcase_111 | AC | 2 ms
5,376 KB |
testcase_112 | AC | 2 ms
5,376 KB |
testcase_113 | AC | 2 ms
5,376 KB |
testcase_114 | AC | 2 ms
5,376 KB |
testcase_115 | AC | 2 ms
5,376 KB |
testcase_116 | AC | 2 ms
5,376 KB |
testcase_117 | AC | 2 ms
5,376 KB |
testcase_118 | AC | 2 ms
5,376 KB |
testcase_119 | AC | 2 ms
5,376 KB |
testcase_120 | AC | 2 ms
5,376 KB |
testcase_121 | AC | 2 ms
5,376 KB |
testcase_122 | AC | 4 ms
5,376 KB |
testcase_123 | AC | 3 ms
5,376 KB |
testcase_124 | AC | 3 ms
5,376 KB |
ソースコード
#ifndef ___CLASS_MODINT #define ___CLASS_MODINT #include <vector> #include <cstdint> using singlebit = uint32_t; using doublebit = uint64_t; static constexpr singlebit find_inv(singlebit n, int d = 5, singlebit x = 1) { return d == 0 ? x : find_inv(n, d - 1, x * (2 - x * n)); } template <singlebit mod, singlebit primroot> class modint { // Fast Modulo Integer, Assertion: mod < 2^31 private: singlebit n; static constexpr int level = 32; // LIMIT OF singlebit static constexpr singlebit max_value = -1; static constexpr singlebit r2 = (((1ull << level) % mod) << level) % mod; static constexpr singlebit inv = singlebit(-1) * find_inv(mod); static singlebit reduce(doublebit x) { singlebit res = (x + doublebit(singlebit(x) * inv) * mod) >> level; return res < mod ? res : res - mod; } public: modint() : n(0) {}; modint(singlebit n_) { n = reduce(doublebit(n_) * r2); }; modint& operator=(const singlebit x) { n = reduce(doublebit(x) * r2); return *this; } bool operator==(const modint& x) const { return n == x.n; } bool operator!=(const modint& x) const { return n != x.n; } modint& operator+=(const modint& x) { n += x.n; n -= (n < mod ? 0 : mod); return *this; } modint& operator-=(const modint& x) { n += mod - x.n; n -= (n < mod ? 0 : mod); return *this; } modint& operator*=(const modint& x) { n = reduce(1ull * n * x.n); return *this; } modint operator+(const modint& x) const { return modint(*this) += x; } modint operator-(const modint& x) const { return modint(*this) -= x; } modint operator*(const modint& x) const { return modint(*this) *= x; } static singlebit get_mod() { return mod; } static singlebit get_primroot() { return primroot; } singlebit get() { return reduce(doublebit(n)); } modint binpow(singlebit b) { modint ans(1), cur(*this); while (b > 0) { if (b & 1) ans *= cur; cur *= cur; b >>= 1; } return ans; } }; template<typename modulo> std::vector<modulo> get_modvector(std::vector<int> v) { std::vector<modulo> ans(v.size()); for (int i = 0; i < v.size(); ++i) { ans[i] = v[i]; } return ans; } #endif #ifndef ___CLASS_NTT #define ___CLASS_NTT #include <vector> template<typename modulo> class ntt { // Number Theoretic Transform private: int depth; std::vector<modulo> roots; std::vector<modulo> powinv; public: ntt() { depth = 0; uint32_t div_number = modulo::get_mod() - 1; while (div_number % 2 == 0) div_number >>= 1, ++depth; modulo b = modulo::get_primroot(); for (int i = 0; i < depth; ++i) b *= b; modulo baseroot = modulo::get_primroot(), bb = b; while (bb != 1) bb *= b, baseroot *= modulo::get_primroot(); roots = std::vector<modulo>(depth + 1, 0); powinv = std::vector<modulo>(depth + 1, 0); powinv[1] = (modulo::get_mod() + 1) / 2; for (int i = 2; i <= depth; ++i) powinv[i] = powinv[i - 1] * powinv[1]; roots[depth] = 1; for (int i = 0; i < modulo::get_mod() - 1; i += 1 << depth) roots[depth] *= baseroot; for (int i = depth - 1; i >= 1; --i) roots[i] = roots[i + 1] * roots[i + 1]; } void fourier_transform(std::vector<modulo>& v, bool inverse) { int s = v.size(); for (int i = 0, j = 1; j < s - 1; ++j) { for (int k = s >> 1; k > (i ^= k); k >>= 1); if (i < j) std::swap(v[i], v[j]); } int sc = 0, sz = 1; while (sz < s) sz *= 2, ++sc; std::vector<modulo> pw(s + 1); pw[0] = 1; for (int i = 1; i <= s; i++) pw[i] = pw[i - 1] * roots[sc]; int qs = s; for (int b = 1; b < s; b <<= 1) { qs >>= 1; for (int i = 0; i < s; i += b * 2) { for (int j = i; j < i + b; ++j) { modulo delta = pw[(inverse ? b * 2 - j + i : j - i) * qs] * v[j + b]; v[j + b] = v[j] - delta; v[j] += delta; } } } if (inverse) { for (int i = 0; i < s; ++i) v[i] *= powinv[sc]; } } std::vector<modulo> convolve(std::vector<modulo> v1, std::vector<modulo> v2) { const int threshold = 16; if (v1.size() < v2.size()) swap(v1, v2); int s1 = 1; while (s1 < v1.size()) s1 <<= 1; v1.resize(s1); int s2 = 1; while (s2 < v2.size()) s2 <<= 1; v2.resize(s2 * 2); std::vector<modulo> ans(s1 + s2); if (s2 <= threshold) { for (int i = 0; i < s1; ++i) { for (int j = 0; j < s2; ++j) { ans[i + j] += v1[i] * v2[j]; } } } else { fourier_transform(v2, false); for (int i = 0; i < s1; i += s2) { std::vector<modulo> v(v1.begin() + i, v1.begin() + i + s2); v.resize(s2 * 2); fourier_transform(v, false); for (int j = 0; j < v.size(); ++j) v[j] *= v2[j]; fourier_transform(v, true); for (int j = 0; j < s2 * 2; ++j) { ans[i + j] += v[j]; } } } return ans; } }; #endif #ifndef __CLASS_BASICINTEGER #define __CLASS_BASICINTEGER #include <vector> #include <algorithm> using modulo1 = modint<469762049, 3>; ntt<modulo1> ntt_base1; using modulo2 = modint<167772161, 3>; ntt<modulo2> ntt_base2; const modulo1 magic_inv = modulo1(modulo2::get_mod()).binpow(modulo1::get_mod() - 2); template<int base> class basic_integer { protected: std::vector<int> a; public: basic_integer() : a(std::vector<int>({ 0 })) {}; basic_integer(const std::vector<int>& a_) : a(a_) {}; int size() const { return a.size(); } int nth_digit(int n) const { return a[n]; } basic_integer& resize() { int lim = 1; for (int i = 0; i < a.size(); ++i) { if (a[i] != 0) lim = i + 1; } a.resize(lim); return *this; } basic_integer& shift() { for (int i = 0; i < int(a.size()) - 1; ++i) { if (a[i] >= 0) { a[i + 1] += a[i] / base; a[i] %= base; } else { int x = (-a[i] + base - 1) / base; a[i] += x * base; a[i + 1] -= x; } } while (a.back() >= base) { a.push_back(a.back() / base); a[a.size() - 2] %= base; } return *this; } bool operator==(const basic_integer& b) const { return a == b.a; } bool operator!=(const basic_integer& b) const { return a != b.a; } bool operator<(const basic_integer& b) const { if (a.size() != b.a.size()) return a.size() < b.a.size(); for (int i = a.size() - 1; i >= 0; --i) { if (a[i] != b.a[i]) return a[i] < b.a[i]; } return false; } bool operator>(const basic_integer& b) const { return b < (*this); } bool operator<=(const basic_integer& b) const { return !((*this) > b); } bool operator>=(const basic_integer& b) const { return !((*this) < b); } basic_integer& operator<<=(const uint32_t x) { if (a.back() >= 1 || a.size() >= 2) { std::vector<int> v(x, 0); a.insert(a.begin(), v.begin(), v.end()); } return (*this); } basic_integer& operator>>=(const uint32_t x) { if (x == 0) return *this; if (x > a.size()) a = { 0 }; else a = std::vector<int>(a.begin() + x, a.end()); return (*this); } basic_integer& operator+=(const basic_integer& b) { if (a.size() < b.a.size()) a.resize(b.a.size(), 0); for (int i = 0; i < b.a.size(); ++i) a[i] += b.a[i]; return (*this).shift(); } basic_integer& operator-=(const basic_integer& b) { for (int i = 0; i < b.a.size(); ++i) a[i] -= b.a[i]; return (*this).shift().resize(); } basic_integer& operator*=(const basic_integer& b) { std::vector<modulo1> mul_base1 = ntt_base1.convolve(get_modvector<modulo1>(a), get_modvector<modulo1>(b.a)); std::vector<modulo2> mul_base2 = ntt_base2.convolve(get_modvector<modulo2>(a), get_modvector<modulo2>(b.a)); const int margin = 20; a = std::vector<int>(mul_base1.size() + margin); for (int i = 0; i < a.size() - margin; ++i) { // s * p1 + a1 = val = t * p2 + a2's solution is t = (a1 - a2) / p2 (mod p1) long long val = (long long)(((mul_base1[i] - modulo1(mul_base2[i].get())) * magic_inv).get()) * modulo2::get_mod() + mul_base2[i].get(); for (int j = i; val > 0 && j < a.size(); ++j) { a[j] += val % base; if (a[j] >= base) { a[j] -= base; a[j + 1] += 1; } val /= base; } } return (*this).resize(); } basic_integer& operator/=(const basic_integer& b) { int preci = a.size() - b.a.size(); basic_integer t({ 1 }); basic_integer two = basic_integer({ 2 }) << b.a.size(); basic_integer pre; int lim = std::min(preci, 3); int blim = std::min(int(b.a.size()), 6); t <<= lim; while (pre != t) { basic_integer rb = b >> (b.a.size() - blim); if (blim != b.a.size()) rb += basic_integer({ 1 }); pre = t; t *= (basic_integer({ 2 }) << (blim + lim)) - rb * t; t.a = std::vector<int>(t.a.begin() + lim + blim, t.a.end()); } if (lim != preci) { pre = basic_integer(); while (pre != t) { basic_integer rb = b >> (b.a.size() - blim); if (blim != b.a.size()) rb += basic_integer({ 1 }); pre = t; t *= (basic_integer({ 2 }) << (blim + lim)) - rb * t; t.a = std::vector<int>(t.a.begin() + lim + blim, t.a.end()); int next_lim = std::min(lim * 2 + 1, preci); if (next_lim != lim) t <<= next_lim - lim; int next_blim = std::min(blim * 2 + 1, int(b.a.size())); lim = next_lim; blim = next_blim; } } basic_integer ans = (*this) * t; ans.a = std::vector<int>(ans.a.begin() + a.size(), ans.a.end()); while ((ans + basic_integer({ 1 })) * b <= (*this)) { ans += basic_integer({ 1 }); } (*this) = ans.resize(); return *this; } basic_integer& divide_by_2() { for (int i = a.size() - 1; i >= 0; --i) { int carry = a[i] % 2; a[i] /= 2; if (i != 0) a[i - 1] += carry * base; } if (a.size() >= 2 && a.back() == 0) a.pop_back(); return *this; } basic_integer operator<<(int x) const { return basic_integer(*this) <<= x; } basic_integer operator >> (int x) const { return basic_integer(*this) >>= x; } basic_integer operator+(const basic_integer& b) const { return basic_integer(*this) += b; } basic_integer operator-(const basic_integer& b) const { return basic_integer(*this) -= b; } basic_integer operator*(const basic_integer& b) const { return basic_integer(*this) *= b; } basic_integer operator/(const basic_integer& b) const { return basic_integer(*this) /= b; } }; #endif #ifndef ___CLASS_NEWBIGINT #define ___CLASS_NEWBIGINT #include <string> #include <iostream> #include <algorithm> const int digit = 4; const int digit_base = 10000; class bigint : public basic_integer<digit_base> { public: bigint() { a = std::vector<int>({ 0 }); }; bigint(long long x) { a.clear(); for (int i = 0; x > 0; ++i) { a.push_back(x % digit_base); x /= digit_base; } if (a.size() == 0) a = { 0 }; } bigint(const std::string& s) { a.clear(); for (int i = 0; digit * i < s.size(); ++i) { a.push_back(std::stoi(s.substr(std::max(int(s.size()) - i * digit - digit, 0), digit - std::max(digit + i * digit - int(s.size()), 0)))); } if (a.size() == 0) a = { 0 }; } std::string to_string() const { std::string ret; bool flag = false; for (int i = a.size() - 1; i >= 0; --i) { if (a[i] > 0 && !flag) { ret += std::to_string(a[i]); flag = true; } else if (flag) { std::string sub = std::to_string(a[i]); ret += std::string(digit - sub.size(), '0') + sub; } } return ret.empty() ? "0" : ret; } int convert_int() const { return std::stoi((*this).to_string()); } long long convert_ll() const { return std::stoll((*this).to_string()); } bigint& operator<<=(int x) { return reinterpret_cast<bigint&>(reinterpret_cast<basic_integer&>(a) <<= x); } bigint& operator>>=(int x) { return reinterpret_cast<bigint&>(reinterpret_cast<basic_integer&>(a) >>= x); } bigint& operator+=(const bigint& b) { return reinterpret_cast<bigint&>(reinterpret_cast<basic_integer&>(a) += basic_integer(b)); } bigint& operator-=(const bigint& b) { return reinterpret_cast<bigint&>(reinterpret_cast<basic_integer&>(a) -= basic_integer(b)); } bigint& operator*=(const bigint& b) { return reinterpret_cast<bigint&>(reinterpret_cast<basic_integer&>(a) *= basic_integer(b)); } bigint& operator/=(const bigint& b) { return reinterpret_cast<bigint&>(reinterpret_cast<basic_integer&>(a) /= basic_integer(b)); } bigint& divide_by_2() { return reinterpret_cast<bigint&>(reinterpret_cast<basic_integer&>(a).divide_by_2()); } bigint operator<<(int x) const { return bigint(*this) <<= x; } bigint operator >> (int x) const { return bigint(*this) >>= x; } bigint operator+(const bigint& b) const { return bigint(*this) += b; } bigint operator-(const bigint& b) const { return bigint(*this) -= b; } bigint operator*(const bigint& b) const { return bigint(*this) *= b; } bigint operator/(const bigint& b) const { return bigint(*this) /= b; } friend std::istream& operator >> (std::istream& is, bigint& x) { std::string s; is >> s; x = bigint(s); return is; } friend std::ostream& operator<<(std::ostream& os, const bigint& x) { os << x.to_string(); return os; } }; #endif #ifndef ___CLASS_NEWBIGFLOAT #define ___CLASS_NEWBIGFLOAT class bigfloat { private: bigint b; int scale; // b * D^scale (b is represented as D-ary number) public: bigfloat() : b(0), scale(0) {}; bigfloat(const bigint& b_) : b(b_), scale(0) {}; bigfloat(const bigint& b_, int scale_) : b(b_), scale(scale_) {}; int get_scale() const { return scale; } bigint get_number() const { return b; } bigfloat& set_scale(int scale_) { if (scale < scale_) b >>= (scale_ - scale); else b <<= (scale - scale_); scale = scale_; return *this; } bigfloat& operator<<=(int x) { scale += x; return *this; } bigfloat& operator>>=(int x) { scale -= x; return *this; } bigfloat& operator+=(const bigfloat& f) { if (scale > f.scale) (*this).set_scale(f.scale), (*this).b += f.b; else { bigint delta = f.b << (f.scale - scale); (*this).b += delta; } return *this; } bigfloat& operator-=(const bigfloat& f) { if (scale > f.scale) (*this).set_scale(f.scale), (*this).b -= f.b; else (*this).b -= (f.b << (f.scale - scale)); return *this; } bigfloat& operator*=(const bigfloat& f) { b *= f.b; scale += f.scale; return *this; } bigfloat& operator/=(const bigfloat& f) { b /= f.b; scale -= f.scale; return *this; } bigfloat& divide_by_2() { b.divide_by_2(); return *this; } bool operator==(const bigfloat& f) { return b == f.b && scale == f.scale; } bool operator!=(const bigfloat& f) { return b != f.b || scale != f.scale; } bigfloat operator<<(int x) const { return bigfloat(*this) <<= x; } bigfloat operator >> (int x) const { return bigfloat(*this) >>= x; } bigfloat operator+(const bigfloat& f) const { return bigfloat(*this) += f; } bigfloat operator-(const bigfloat& f) const { return bigfloat(*this) -= f; } bigfloat operator*(const bigfloat& f) const { return bigfloat(*this) *= f; } bigfloat operator/(const bigfloat& f) const { return bigfloat(*this) /= f; } std::string to_string() const { std::string s = b.to_string(); if (scale * digit > 0) s += std::string(scale, '0'); else if (1 <= -scale * digit && -scale * digit < s.size()) { s = s.substr(0, s.size() + scale * digit) + "." + s.substr(s.size() + scale * digit); } else if (-scale * digit >= s.size()) { s = "0." + std::string(-scale * digit - s.size(), '0') + s; } return s; } bigint to_bigint() const { if (scale < 0) return b >> (-scale); return b << scale; } friend std::ostream& operator<<(std::ostream& os, const bigfloat& f) { os << f.to_string(); return os; } }; #endif bigint sqrt(bigint x) { if (x == bigint(0)) return bigint(0); int max_scale = (x.size() + 1) / 2; int scale = std::min(4, max_scale); bigint a = bigint(1) << (scale - 1), pre; while (pre != a) { pre = a; bigint xd = x; if (x.size() > 2 * scale) xd >>= (x.size() - 2 * scale + x.size() % 2); bigint b = xd / a; a = (a + b).divide_by_2(); } pre = bigint(); while (pre != a) { pre = a; bigint xd = x; if (x.size() > 2 * scale) xd >>= (x.size() - 2 * scale + x.size() % 2); bigint b = xd / a; a = (a + b).divide_by_2(); int next_scale = std::min(max_scale, scale * 2); a <<= next_scale - scale; scale = next_scale; } return a; } bigfloat sqrt(bigfloat x, int final_scale) { x <<= 2 * final_scale; bigint b = x.to_bigint(); b = sqrt(b); bigfloat ans = b; ans >>= final_scale; return ans; } #include <cmath> #include <iostream> using namespace std; int main() { long long a, b, c; cin >> a >> b >> c; cout.precision(15); if (a == 0 && b == 0 && c == 0) { cout << -1 << endl; } else if (a == 0 && b == 0) { cout << 0 << endl; } else if (a == 0) { cout << 1 << endl; cout << fixed << -(long double)(c) / b << endl; } else { long long d = b * b - 4 * a * c; if (d < 0) { cout << 0 << endl; } else if (d == 0) { cout << 1 << endl; cout << fixed << -(long double)(b) / (2 * a) << endl; } else { cout << 2 << endl; if (a < 0) a *= -1, b *= -1, c *= -1; bigfloat sd = sqrt(bigfloat(d), 50); bigfloat ans1 = (b <= 0 && b * b >= d ? bigfloat(-b) - sd : (b <= 0 ? sd - bigfloat(-b) : sd + bigfloat(b))) / bigfloat(2 * a); bigfloat ans2 = (b <= 0 || b * b <= d ? (b <= 0 ? sd + bigfloat(-b) : sd - bigfloat(b)) : bigfloat(b) - sd) / bigfloat(2 * a); string s1 = ans1.to_string(); if (!(b <= 0 && b * b >= d)) s1 = "-" + s1; string s2 = ans2.to_string(); if (!(b <= 0 || b * b <= d)) s2 = "-" + s2; cout << s1 << endl; cout << s2 << endl; } } return 0; }