結果
| 問題 |
No.980 Fibonacci Convolution Hard
|
| コンテスト | |
| ユーザー |
やむなく
|
| 提出日時 | 2020-01-31 22:40:19 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 8,258 bytes |
| コンパイル時間 | 1,963 ms |
| コンパイル使用メモリ | 184,112 KB |
| 実行使用メモリ | 239,936 KB |
| 最終ジャッジ日時 | 2024-09-17 09:31:00 |
| 合計ジャッジ時間 | 29,893 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | WA * 17 |
ソースコード
//
// Created by yamunaku on 2020/01/31.
//
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for(int i = 0; i < (n); i++)
#define repl(i, l, r) for(int i = (l); i < (r); i++)
#define per(i, n) for(int i = ((n)-1); i >= 0; i--)
#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)
#define all(x) (x).begin(),(x).end()
#define MOD9 998244353
#define MOD 1000000007
#define IINF 1000000000
#define LINF 1000000000000000000
#define SP <<" "<<
#define CYES cout<<"Yes"<<endl
#define CNO cout<<"No"<<endl
#define CFS cin.tie(0);ios::sync_with_stdio(false)
#define CST(x) cout<<fixed<<setprecision(x)
using ll = long long;
using ld = long double;
using vi = vector<int>;
using mti = vector<vector<int>>;
using vl = vector<ll>;
using mtl = vector<vector<ll>>;
using pi = pair<int, int>;
using pl = pair<ll, ll>;
template<typename T>
using heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>;
template<int mod>
struct ModInt{
int x;
ModInt() : x(0){}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod){}
ModInt &operator+=(const ModInt &p){
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p){
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p){
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p){
*this *= p.inverse();
return *this;
}
ModInt operator-() const{ return ModInt(-x); }
ModInt operator+(const ModInt &p) const{ return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const{ return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const{ return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const{ return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const{ return x == p.x; }
bool operator!=(const ModInt &p) const{ return x != p.x; }
ModInt inverse() const{
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0){
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const{
ModInt ret(1), mul(x);
while(n > 0){
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p){
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a){
int64_t t;
is >> t;
a = ModInt<mod>(t);
return (is);
}
static int get_mod(){ return mod; }
};
namespace FastFourierTransform{
using real = double;
struct C{
real x, y;
C() : x(0), y(0){}
C(real x, real y) : x(x), y(y){}
inline C operator+(const C &c) const{ return C(x + c.x, y + c.y); }
inline C operator-(const C &c) const{ return C(x - c.x, y - c.y); }
inline C operator*(const C &c) const{ return C(x * c.x - y * c.y, x * c.y + y * c.x); }
inline C conj() const{ return C(x, -y); }
};
const real PI = acosl(-1);
int base = 1;
vector<C> rts = {{0, 0},
{1, 0}};
vector<int> rev = {0, 1};
void ensure_base(int nbase){
if(nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for(int i = 0; i < (1 << nbase); i++){
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
while(base < nbase){
real angle = PI * 2.0 / (1 << (base + 1));
for(int i = 1 << (base - 1); i < (1 << base); i++){
rts[i << 1] = rts[i];
real angle_i = angle * (2 * i + 1 - (1 << base));
rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
}
++base;
}
}
void fft(vector<C> &a, int n){
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for(int i = 0; i < n; i++){
if(i < (rev[i] >> shift)){
swap(a[i], a[rev[i] >> shift]);
}
}
for(int k = 1; k < n; k <<= 1){
for(int i = 0; i < n; i += 2 * k){
for(int j = 0; j < k; j++){
C z = a[i + j + k] * rts[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
vector<int64_t> multiply(const vector<int> &a, const vector<int> &b){
int need = (int) a.size() + (int) b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
vector<C> fa(sz);
for(int i = 0; i < sz; i++){
int x = (i < (int) a.size() ? a[i] : 0);
int y = (i < (int) b.size() ? b[i] : 0);
fa[i] = C(x, y);
}
fft(fa, sz);
C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
for(int i = 0; i <= (sz >> 1); i++){
int j = (sz - i) & (sz - 1);
C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
fa[i] = z;
}
for(int i = 0; i < (sz >> 1); i++){
C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
fa[i] = A0 + A1 * s;
}
fft(fa, sz >> 1);
vector<int64_t> ret(need);
for(int i = 0; i < need; i++){
ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
}
return ret;
}
};
template<typename T>
struct ArbitraryModConvolution{
using real = FastFourierTransform::real;
using C = FastFourierTransform::C;
ArbitraryModConvolution() = default;
vector<T> multiply(const vector<T> &a, const vector<T> &b, int need = -1){
if(need == -1) need = a.size() + b.size() - 1;
int nbase = 0;
while((1 << nbase) < need) nbase++;
FastFourierTransform::ensure_base(nbase);
int sz = 1 << nbase;
vector<C> fa(sz);
for(int i = 0; i < a.size(); i++){
fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15);
}
fft(fa, sz);
vector<C> fb(sz);
if(a == b){
fb = fa;
}else{
for(int i = 0; i < b.size(); i++){
fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15);
}
fft(fb, sz);
}
real ratio = 0.25 / sz;
C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1);
for(int i = 0; i <= (sz >> 1); i++){
int j = (sz - i) & (sz - 1);
C a1 = (fa[i] + fa[j].conj());
C a2 = (fa[i] - fa[j].conj()) * r2;
C b1 = (fb[i] + fb[j].conj()) * r3;
C b2 = (fb[i] - fb[j].conj()) * r4;
if(i != j){
C c1 = (fa[j] + fa[i].conj());
C c2 = (fa[j] - fa[i].conj()) * r2;
C d1 = (fb[j] + fb[i].conj()) * r3;
C d2 = (fb[j] - fb[i].conj()) * r4;
fa[i] = c1 * d1 + c2 * d2 * r5;
fb[i] = c1 * d2 + c2 * d1;
}
fa[j] = a1 * b1 + a2 * b2 * r5;
fb[j] = a1 * b2 + a2 * b1;
}
fft(fa, sz);
fft(fb, sz);
vector<T> ret(need);
for(int i = 0; i < need; i++){
int64_t aa = llround(fa[i].x);
int64_t bb = llround(fb[i].x);
int64_t cc = llround(fa[i].y);
aa = T(aa).x, bb = T(bb).x, cc = T(cc).x;
ret[i] = aa + (bb << 15) + (cc << 30);
}
return ret;
}
};
int main(){
// CFS;
ModInt<MOD> p;
cin >> p;
vector<ModInt<MOD>> a(2000010);
a[0] = 0, a[1] = 1;
repl(i, 2, 2000010){
a[i] = p * a[i - 1] + a[i - 2];
}
ArbitraryModConvolution<ModInt<MOD>> amc;
vector<ModInt<MOD>> ans = amc.multiply(a, a);
int q;
cin >> q;
rep(i, q){
ll x;
cin >> x;
x -= 2;
cout << ans[x] << endl;
}
return 0;
}
やむなく