結果

問題 No.314 ケンケンパ
ユーザー mkawa2mkawa2
提出日時 2020-02-08 00:36:31
言語 Python3
(3.12.2 + numpy 1.26.4 + scipy 1.12.0)
結果
AC  
実行時間 33 ms / 1,000 ms
コード長 2,285 bytes
コンパイル時間 248 ms
コンパイル使用メモリ 12,928 KB
実行使用メモリ 11,008 KB
最終ジャッジ日時 2024-09-25 08:29:29
合計ジャッジ時間 1,532 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 31 ms
11,008 KB
testcase_01 AC 31 ms
10,880 KB
testcase_02 AC 32 ms
11,008 KB
testcase_03 AC 32 ms
11,008 KB
testcase_04 AC 31 ms
11,008 KB
testcase_05 AC 30 ms
11,008 KB
testcase_06 AC 30 ms
11,008 KB
testcase_07 AC 31 ms
10,880 KB
testcase_08 AC 31 ms
11,008 KB
testcase_09 AC 30 ms
10,880 KB
testcase_10 AC 31 ms
11,008 KB
testcase_11 AC 31 ms
10,880 KB
testcase_12 AC 31 ms
11,008 KB
testcase_13 AC 30 ms
11,008 KB
testcase_14 AC 31 ms
11,008 KB
testcase_15 AC 32 ms
10,880 KB
testcase_16 AC 32 ms
11,008 KB
testcase_17 AC 32 ms
11,008 KB
testcase_18 AC 32 ms
11,008 KB
testcase_19 AC 33 ms
11,008 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

class mint:
    def __init__(self, x):
        self.__x = x % md

    def __str__(self):
        return str(self.__x)

    def __add__(self, other):
        if isinstance(other, mint): other = other.__x
        return mint(self.__x + other)

    def __sub__(self, other):
        if isinstance(other, mint): other = other.__x
        return mint(self.__x - other)

    def __rsub__(self, other):
        return mint(other - self.__x)

    def __mul__(self, other):
        if isinstance(other, mint): other = other.__x
        return mint(self.__x * other)

    __radd__ = __add__
    __rmul__ = __mul__

    def __truediv__(self, other):
        if isinstance(other, mint): other = other.__x
        return mint(self.__x * pow(other, md - 2, md))

    def __pow__(self, power, modulo=None):
        return mint(pow(self.__x, power, md))

class Fibonacci:
    def __init__(self):
        coff = [1,1,0]
        self.f0 = [1,2,2]
        # 上2つは問題ごとに手作業で設定
        # af(n)+bf(n+1)+cf(n+2)+df(n+3)=f(n+4)みたいなとき
        # coff=[a,b,c,d]
        # 初期値f0(f(0)からf(3))
        n = len(coff)
        ff = [[0] * n for _ in range(2 * n - 1)]
        for i in range(n): ff[i][i] = mint(1)
        for i in range(n, 2 * n - 1):
            ffi = ff[i]
            for j, c in enumerate(coff, i - n):
                ffj = ff[j]
                for k in range(n): ffi[k] += c * ffj[k]
        self.bn = 1 << (n - 1).bit_length()
        self.base = ff[self.bn]
        self.ff = ff
        self.n = n

    def __mm(self, aa, bb):
        n = self.n
        res = [0] * (n * 2 - 1)
        for i, a in enumerate(aa):
            for j, b in enumerate(bb):
                res[i + j] += a * b
        for i in range(n, 2 * n - 1):
            c = res[i]
            ffi = self.ff[i]
            for j in range(n):
                res[j] += c * ffi[j]
        return res[:n]

    def v(self, x):
        base = self.base
        aa = self.ff[x % self.bn]
        x //= self.bn
        while x:
            if x & 1: aa = self.__mm(aa, base)
            base = self.__mm(base, base)
            x >>= 1
        return sum(a * f for a, f in zip(aa, self.f0))

md = 10**9+7

def main():
    n=int(input())
    f=Fibonacci()
    print(f.v(n-1))

main()
0