結果
問題 | No.763 Noelちゃんと木遊び |
ユーザー | taotao54321 |
提出日時 | 2020-02-09 14:49:31 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 50 ms / 2,000 ms |
コード長 | 51,906 bytes |
コンパイル時間 | 2,945 ms |
コンパイル使用メモリ | 253,868 KB |
実行使用メモリ | 20,364 KB |
最終ジャッジ日時 | 2024-10-01 05:56:57 |
合計ジャッジ時間 | 4,513 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 41 ms
20,364 KB |
testcase_01 | AC | 17 ms
7,680 KB |
testcase_02 | AC | 36 ms
13,440 KB |
testcase_03 | AC | 24 ms
10,112 KB |
testcase_04 | AC | 18 ms
8,064 KB |
testcase_05 | AC | 22 ms
9,984 KB |
testcase_06 | AC | 46 ms
15,488 KB |
testcase_07 | AC | 48 ms
15,232 KB |
testcase_08 | AC | 29 ms
10,496 KB |
testcase_09 | AC | 19 ms
8,064 KB |
testcase_10 | AC | 8 ms
5,248 KB |
testcase_11 | AC | 50 ms
15,744 KB |
testcase_12 | AC | 43 ms
14,208 KB |
testcase_13 | AC | 43 ms
14,208 KB |
testcase_14 | AC | 36 ms
13,056 KB |
testcase_15 | AC | 24 ms
10,240 KB |
testcase_16 | AC | 6 ms
5,248 KB |
testcase_17 | AC | 24 ms
10,112 KB |
testcase_18 | AC | 46 ms
15,616 KB |
testcase_19 | AC | 47 ms
14,464 KB |
testcase_20 | AC | 42 ms
14,336 KB |
ソースコード
/** * */ #define ASSERT_LV 1 // header {{{ #ifndef ASSERT_LV # define ASSERT_LV 1 #endif #if ASSERT_LV == 0 # define NDEBUG #endif #if defined(__GNUC__) && !defined(__clang__) #include <bits/stdc++.h> #else #include <cassert> #include <cctype> #include <cerrno> #include <cfloat> #include <ciso646> #include <climits> //#include <clocale> #include <cmath> //#include <csetjmp> //#include <csignal> #include <cstdarg> #include <cstddef> #include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> //#include <cwchar> //#include <cwctype> #if __cplusplus >= 201103L //#include <ccomplex> #include <cfenv> #include <cinttypes> //#include <cstdalign> //#include <cstdbool> #include <cstdint> //#include <ctgmath> //#include <cuchar> #endif #include <algorithm> #include <bitset> #include <complex> #include <deque> #include <exception> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iosfwd> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> //#include <locale> #include <map> #include <memory> #include <new> #include <numeric> #include <ostream> #include <queue> #include <set> #include <sstream> #include <stack> #include <stdexcept> #include <streambuf> #include <string> #include <typeinfo> #include <utility> #include <valarray> #include <vector> #if __cplusplus >= 201103L #include <array> //#include <atomic> #include <chrono> //#include <codecvt> //#include <condition_variable> #include <forward_list> //#include <future> #include <initializer_list> //#include <mutex> #include <random> #include <ratio> #include <regex> #include <scoped_allocator> //#include <system_error> #include <thread> #include <tuple> #include <typeindex> #include <type_traits> #include <unordered_map> #include <unordered_set> #endif #if __cplusplus >= 201402L //#include <shared_mutex> #endif #if __cplusplus >= 201703L #include <any> //#include <charconv> //#include <execution> //#include <filesystem> #include <optional> //#include <memory_resource> #include <string_view> #include <variant> #endif #endif using namespace std; using i8 = int8_t; using u8 = uint8_t; using i16 = int16_t; using u16 = uint16_t; using i32 = int32_t; using u32 = uint32_t; using i64 = int64_t; using u64 = uint64_t; #ifdef __SIZEOF_INT128__ using i128 = __int128; using u128 = unsigned __int128; #endif using f32 = float; using f64 = double; using f80 = long double; template<class T> constexpr T PROCON_INF(); template<> constexpr i32 PROCON_INF<i32>() { return 1'010'000'011; } template<> constexpr i64 PROCON_INF<i64>() { return INT64_C(1'010'000'000'000'000'017); } template<> constexpr f32 PROCON_INF<f32>() { return 1e19F; } template<> constexpr f64 PROCON_INF<f64>() { return 1e100; } template<> constexpr f80 PROCON_INF<f80>() { return 1e100L; } // }}} using Int = i64; using Real = f80; constexpr Int MOD = 1'000'000'007; //constexpr Int MOD = 998'244'353; constexpr Real EPS = Real(1e-10L); constexpr int COUT_PREC = 15; constexpr bool COUT_AUTOFLUSH = false; // procon {{{ static_assert(is_same<Int,i64>::value || is_same<Int,i32>::value, ""); static_assert(is_same<Real,f80>::value || is_same<Real,f64>::value || is_same<Real,f32>::value, ""); #define CPP_STR(x) CPP_STR_I(x) #define CPP_CAT(x,y) CPP_CAT_I(x,y) #define CPP_STR_I(args...) #args #define CPP_CAT_I(x,y) x ## y #define SFINAE(pred...) std::enable_if_t<(pred), std::nullptr_t> = nullptr #define ASSERT(expr...) assert((expr)) #if defined(PROCON_LOCAL) || ASSERT_LV >= 2 # define ASSERT_LOCAL(expr...) assert((expr)) #else # define ASSERT_LOCAL(expr...) #endif constexpr Int INF = PROCON_INF<Int>(); constexpr Real FINF = PROCON_INF<Real>(); constexpr Real PI = Real(3.141592653589793238462643383279502884197L); template<class T> constexpr T SQRT_MAX(); template<> constexpr i32 SQRT_MAX<i32>() { return 46340; } template<> constexpr i64 SQRT_MAX<i64>() { return INT64_C(3037000499); } template<class T, SFINAE(is_signed<T>::value)> constexpr T ABS(T x) noexcept { return x < 0 ? -x : x; } constexpr bool LT_EPS(Real lhs, Real rhs, Real eps=EPS) { return lhs < rhs-eps; } constexpr bool GT_EPS(Real lhs, Real rhs, Real eps=EPS) { return lhs > rhs+eps; } constexpr bool EQ_EPS(Real lhs, Real rhs, Real eps=EPS) { return ABS(lhs-rhs) <= eps; } constexpr bool EQ_EXACT(Real lhs, Real rhs) { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wfloat-equal" return lhs == rhs; #pragma GCC diagnostic pop } #define FOR(i, start, end) for(Int i = (start), CPP_CAT(i,xxxx_end)=(end); i < CPP_CAT(i,xxxx_end); ++i) #define REP(i, n) FOR(i, 0, n) #define LOOP(n) REP(CPP_CAT(macro_loop_counter,__COUNTER__), n) #define ALL(f,c,...) (([&](decltype((c)) cccc) { return (f)(std::begin(cccc), std::end(cccc), ## __VA_ARGS__); })(c)) #define SLICE(f,c,l,r,...) (([&](decltype((c)) cccc, decltype((l)) llll, decltype((r)) rrrr) {\ auto iiii = llll <= rrrr ? std::begin(cccc)+llll : std::end(cccc);\ auto jjjj = llll <= rrrr ? std::begin(cccc)+rrrr : std::end(cccc);\ return (f)(iiii, jjjj, ## __VA_ARGS__);\ })(c,l,r)) #define LIFT(f) ([](auto&&... args) -> decltype(auto) { return (f)(std::forward<decltype(args)>(args)...); }) template<class C> constexpr Int SIZE(const C& c) noexcept { return Int(c.size()); } template<class T, size_t N> constexpr Int SIZE(const T (&)[N]) noexcept { return Int(N); } constexpr bool is_odd (Int x) { return x%2 != 0; } constexpr bool is_even(Int x) { return x%2 == 0; } constexpr Int PARITY(Int x) { return x%2==0 ? 0 : 1; } template<class T> constexpr Int CMP(T x, T y) noexcept { return (y<x) - (x<y); } template<class T> constexpr Int SGN(T x) noexcept { return CMP(x,T(0)); } template<class T1, class T2, class Comp=less<>, SFINAE( is_integral<T1>::value && is_integral<T2>::value && is_signed<T1>::value != is_unsigned<T2>::value )> constexpr auto MAX(T1 x, T2 y, Comp comp={}) { return max<common_type_t<T1,T2>>({x,y}, comp); } template<class T1, class T2, class Comp=less<>, SFINAE( is_floating_point<T1>::value && is_floating_point<T2>::value )> constexpr auto MAX(T1 x, T2 y, Comp comp={}) { return max<common_type_t<T1,T2>>({x,y}, comp); } template<class T, class Comp=less<>> constexpr const T& MAX(const T& x, const T& y, Comp comp={}) { return max(x, y, comp); } template<class T, class Comp=less<>> constexpr T MAX(initializer_list<T> ilist, Comp comp={}) { return max(ilist, comp); } template<class T1, class T2, class Comp=less<>, SFINAE( is_integral<T1>::value && is_integral<T2>::value && is_signed<T1>::value != is_unsigned<T2>::value )> constexpr auto MIN(T1 x, T2 y, Comp comp={}) { return min<common_type_t<T1,T2>>({x,y}, comp); } template<class T1, class T2, class Comp=less<>, SFINAE( is_floating_point<T1>::value && is_floating_point<T2>::value )> constexpr auto MIN(T1 x, T2 y, Comp comp={}) { return min<common_type_t<T1,T2>>({x,y}, comp); } template<class T, class Comp=less<>> constexpr const T& MIN(const T& x, const T& y, Comp comp={}) { return min(x, y, comp); } template<class T, class Comp=less<>> constexpr T MIN(initializer_list<T> ilist, Comp comp={}) { return min(ilist, comp); } template<class T, class U, class Comp=less<>> constexpr bool chmax(T& xmax, const U& x, Comp comp={}) noexcept { if(comp(xmax, x)) { xmax = x; return true; } return false; } template<class T, class U, class Comp=less<>> constexpr bool chmin(T& xmin, const U& x, Comp comp={}) noexcept { if(comp(x, xmin)) { xmin = x; return true; } return false; } template<class BinaryFunc, class UnaryFunc> auto ON(BinaryFunc&& bf, UnaryFunc&& uf) { return [bf=forward<BinaryFunc>(bf),uf=forward<UnaryFunc>(uf)](const auto& x, const auto& y) { return bf(uf(x), uf(y)); }; } template<class F> auto LT_ON(F&& f) { return ON(less<>{}, forward<F>(f)); } template<class F> auto GT_ON(F&& f) { return ON(greater<>{}, forward<F>(f)); } template<class F> auto NOT_FN(F&& f) { return [f=forward<F>(f)](auto&&... args) -> bool { return !f(forward<decltype(args)>(args)...); }; } struct IDENTITY { using is_transparent = void; template<class T> constexpr decltype(auto) operator()(T&& x) const { return forward<T>(x); } }; // ビット演算 {{{ // 引数は [-INF,INF] のみ想定 constexpr Int BIT_I(Int i) { return Int(1) << i; } constexpr Int BIT_I_1(Int i) { return BIT_I(i) - 1; } constexpr Int BIT_GET(Int x, Int i) { return x & BIT_I(i); } constexpr bool BIT_TEST(Int x, Int i) { return BIT_GET(x,i) != 0; } constexpr Int BIT_SET(Int x, Int i) { return x | BIT_I(i); } constexpr Int BIT_CLEAR(Int x, Int i) { return x & ~BIT_I(i); } constexpr Int BIT_FLIP(Int x, Int i) { return x ^ BIT_I(i); } constexpr Int BIT_ASSIGN(Int x, Int i, bool b) { return b ? BIT_SET(x,i) : BIT_CLEAR(x,i); } /*constexpr*/ Int BIT_COUNT_LEADING_ZEROS(Int x) { if(is_same<Int,i64>::value) return x==0 ? 64 : __builtin_clzll(u64(x)); else if(is_same<Int,i32>::value) return x==0 ? 32 : __builtin_clz(u32(x)); ASSERT(false); } /*constexpr*/ Int BIT_COUNT_TRAILING_ZEROS(Int x) { if(is_same<Int,i64>::value) return x==0 ? 64 : __builtin_ctzll(u64(x)); else if(is_same<Int,i32>::value) return x==0 ? 32 : __builtin_clz(u32(x)); ASSERT(false); } /*constexpr*/ Int BIT_COUNT_ONES(Int x) { if(is_same<Int,i64>::value) return __builtin_popcountll(u64(x)); else if(is_same<Int,i32>::value) return __builtin_popcount(u32(x)); ASSERT(false); } // 1の個数が奇数なら1, 偶数なら0を返す /*constexpr*/ Int BIT_PARITY(Int x) { if(is_same<Int,i64>::value) return __builtin_parityll(u64(x)); else if(is_same<Int,i32>::value) return __builtin_parity(u32(x)); ASSERT(false); } // X ⊆ {0,1,...,n-1}, |X| = k なる部分集合 X を昇順に列挙する // comb(n,k) 個 // // ``` // Int x = BIT_I_1(3); // do { // // ... // } while(BIT_NEXT_SET_SIZED(x, 10)); // ``` /*constexpr*/ bool BIT_NEXT_SET_SIZED(Int& x, Int n) { if(x == 0) return false; Int t = (x|(x-1)) + 1; x = t | ((~t&(t-1)) >> (BIT_COUNT_TRAILING_ZEROS(x)+1)); return x < BIT_I(n); } // 集合 Y の部分集合 X を昇順に列挙する // 2^|Y| 個 // // ``` // Int y = 0b10101; // Int x = 0; // do { // // ... // } while(BIT_NEXT_SUBSET(x, y)); // ``` constexpr bool BIT_NEXT_SUBSET(Int& x, Int y) { if(x == y) return false; x = (x-y) & y; return true; } // 集合 Y の部分集合 X を降順に列挙する // 2^|Y| 個 // // ``` // Int y = 0b10101; // Int x = y; // do { // // ... // } while(BIT_PREV_SUBSET(x, y)); // ``` constexpr bool BIT_PREV_SUBSET(Int& x, Int y) { if(x == 0) return false; x = (x-1) & y; return true; } // 集合 Y を包含する集合 X ⊆ {0,1,...,n-1} を昇順に列挙する // 2^(n-|Y|) 個 // // ``` // Int y = 0b00010101; // Int x = y; // do { // // ... // } while(BIT_NEXT_SUPERSET(x, 8, y)); // ``` constexpr bool BIT_NEXT_SUPERSET(Int& x, Int n, Int y) { x = (x+1) | y; return x < BIT_I(n); } // }}} // lo:OK, hi:NG template<class Pred> /*constexpr*/ Int bisect_integer(Int lo, Int hi, Pred pred) { ASSERT(lo < hi); while(lo+1 < hi) { Int mid = (lo+hi) / 2; if(pred(mid)) lo = mid; else hi = mid; } return lo; } template<class Pred> /*constexpr*/ Real bisect_real(Real lo, Real hi, Pred pred, Real eps=EPS) { ASSERT_LOCAL(!GT_EPS(lo,hi,eps)); if(lo > hi) swap(lo, hi); while(!EQ_EPS(lo,hi,eps)) { Real mid = (lo+hi) / 2; if(pred(mid)) lo = mid; else hi = mid; } return lo; } template<class Monoid> /*constexpr*/ Monoid fastpow(const Monoid& x, Int e, const Monoid& unity) { ASSERT(e >= 0); Monoid res = unity; Monoid cur = x; while(e > 0) { if(e & 1) res *= cur; cur *= cur; e >>= 1; } return res; } /*constexpr*/ Int ipow(Int x, Int e) { return fastpow<Int>(x,e,1); } /*constexpr*/ Int sqrt_floor(Int x) { ASSERT(x >= 0); Int lo = 0; Int hi = MIN(x/2+2, SQRT_MAX<Int>()+1); return bisect_integer(lo, hi, [x](Int r) { return r*r <= x; }); } /*constexpr*/ Int sqrt_ceil(Int x) { Int r = sqrt_floor(x); return r*r == x ? r : r+1; } /*constexpr*/ Int log2_ceil(Int x) { ASSERT(x > 0); if(is_same<Int,i64>::value) return 64 - BIT_COUNT_LEADING_ZEROS(x-1); else if(is_same<Int,i32>::value) return 32 - BIT_COUNT_LEADING_ZEROS(x-1); ASSERT(false); } /*constexpr*/ Int log2_floor(Int x) { ASSERT(x > 0); if(is_same<Int,i64>::value) return 63 - BIT_COUNT_LEADING_ZEROS(x); else if(is_same<Int,i32>::value) return 31 - BIT_COUNT_LEADING_ZEROS(x); ASSERT(false); } // x > 0 /*constexpr*/ Int pow2_ceil(Int x) { return BIT_I(log2_ceil(x)); } // x > 0 /*constexpr*/ Int pow2_floor(Int x) { return BIT_I(log2_floor(x)); } // Haskell の divMod と同じ constexpr pair<Int,Int> divmod(Int a, Int b) { Int q = a / b; Int r = a % b; if((b>0 && r<0) || (b<0 && r>0)) { --q; r += b; } return {q,r}; } constexpr Int div_ceil(Int a, Int b) { Int q = a / b; Int r = a % b; if((b>0 && r>0) || (b<0 && r<0)) ++q; return q; } constexpr Int div_floor(Int a, Int b) { return divmod(a,b).first; } constexpr Int modulo(Int a, Int b) { return divmod(a,b).second; } /*constexpr*/ Int align_ceil(Int x, Int align) { ASSERT(align > 0); return div_ceil(x,align) * align; } /*constexpr*/ Int align_floor(Int x, Int align) { ASSERT(align > 0); return div_floor(x,align) * align; } template<class InputIt, class BinaryOp> auto FOLD(InputIt first, InputIt last, typename iterator_traits<InputIt>::value_type init, BinaryOp op) { for(; first != last; ++first) init = op(move(init), *first); return init; } template<class InputIt, class BinaryOp> auto FOLD1(InputIt first, InputIt last, BinaryOp op) { auto init = *first++; return FOLD(first, last, init, op); } template<class InputIt> auto SUM(InputIt first, InputIt last) { return FOLD1(first, last, plus<>{}); } template<class C> void UNIQ(C& c) { c.erase(ALL(unique,c), end(c)); } template<class C> void SORT_UNIQ(C& c) { ALL(sort, c); UNIQ(c); } [[noreturn]] void EXIT() { cout.flush(); #ifdef PROCON_LOCAL cerr.flush(); exit(0); #else _Exit(0); #endif } // tuple {{{ template<Int I=0, class F, class... TS, SFINAE(sizeof...(TS) == I)> void tuple_enumerate(tuple<TS...>&, F&&) {} template<Int I=0, class F, class... TS, SFINAE(sizeof...(TS) > I)> void tuple_enumerate(tuple<TS...>& t, F&& f) { f(I, get<I>(t)); tuple_enumerate<I+1>(t, forward<F>(f)); } template<Int I=0, class F, class... TS, SFINAE(sizeof...(TS) == I)> void tuple_enumerate(const tuple<TS...>&, F&&) {} template<Int I=0, class F, class... TS, SFINAE(sizeof...(TS) > I)> void tuple_enumerate(const tuple<TS...>& t, F&& f) { f(I, get<I>(t)); tuple_enumerate<I+1>(t, forward<F>(f)); } // }}} // container {{{ template<class T> struct is_container : false_type {}; template<class T, size_t N> struct is_container<array<T,N>> : true_type {}; template<class... Args> struct is_container<vector<Args...>> : true_type {}; template<class... Args> struct is_container<deque<Args...>> : true_type {}; template<class... Args> struct is_container<list<Args...>> : true_type {}; template<class... Args> struct is_container<forward_list<Args...>> : true_type {}; template<class... Args> struct is_container<set<Args...>> : true_type {}; template<class... Args> struct is_container<multiset<Args...>> : true_type {}; template<class... Args> struct is_container<unordered_set<Args...>> : true_type {}; template<class... Args> struct is_container<unordered_multiset<Args...>> : true_type {}; template<class... Args> struct is_container<map<Args...>> : true_type {}; template<class... Args> struct is_container<multimap<Args...>> : true_type {}; template<class... Args> struct is_container<unordered_map<Args...>> : true_type {}; template<class... Args> struct is_container<unordered_multimap<Args...>> : true_type {}; template<class T, class Enable=void> struct ProconHash { size_t operator()(const T& x) const noexcept { return hash<T>{}(x); } }; template<class T> size_t procon_hash_value(const T& x) noexcept { return ProconHash<T>{}(x); } size_t procon_hash_combine(size_t h1, size_t h2) noexcept { constexpr size_t M = UINT64_C(0xc6a4a7935bd1e995); constexpr int R = 47; h2 *= M; h2 ^= h2 >> R; h2 *= M; h1 ^= h2; h1 *= M; h1 += 0xe6546b64; return h1; } template<class T1, class T2> struct ProconHash<pair<T1,T2>> { size_t operator()(const pair<T1,T2>& p) const noexcept { size_t h1 = procon_hash_value(p.first); size_t h2 = procon_hash_value(p.second); return procon_hash_combine(h1, h2); } }; template<class... TS> struct ProconHash<tuple<TS...>> { size_t operator()(const tuple<TS...>& t) const noexcept { size_t h = 0; tuple_enumerate(t, [&h](Int, const auto& e) { h = procon_hash_combine(h, procon_hash_value(e)); }); return h; } }; template<class C> struct ProconHash<C,enable_if_t<is_container<C>::value>> { size_t operator()(const C& c) const noexcept { size_t h = 0; for(const auto& e : c) h = procon_hash_combine(h, procon_hash_value(e)); return h; } }; template<class T, class Hash=ProconHash<T>, class Eq=equal_to<T>> using HashSet = unordered_set<T,Hash,Eq>; template<class K, class V, class Hash=ProconHash<K>, class Eq=equal_to<K>> using HashMap = unordered_map<K,V,Hash,Eq>; template<class T, class Hash=ProconHash<T>, class Eq=equal_to<T>> using HashMultiset = unordered_multiset<T,Hash,Eq>; template<class K, class V, class Hash=ProconHash<K>, class Eq=equal_to<K>> using HashMultimap = unordered_multimap<K,V,Hash,Eq>; template<class T> auto vec_make(Int n, T x) { return vector<T>(n, x); } template<class T, class... Args, SFINAE(sizeof...(Args) >= 2)> auto vec_make(Int n, Args... args) { auto inner = vec_make<T>(args...); return vector<decltype(inner)>(n, inner); } template<class T> auto vec_reserve(Int cap) { vector<T> res; res.reserve(cap); return res; } template<class T=Int> auto vec_iota(Int n, T init={}) { vector<Int> res(n); ALL(iota, res, init); return res; } template<class ForwardIt, class BinaryOp> auto vec_scan(ForwardIt first, ForwardIt last, typename iterator_traits<ForwardIt>::value_type init, BinaryOp op) { using T = typename iterator_traits<ForwardIt>::value_type; auto res = vec_reserve<T>(distance(first,last)+1); res.emplace_back(init); for(; first != last; ++first) { init = op(move(init), *first); res.emplace_back(init); } return res; } template<class ForwardIt> auto vec_cum(ForwardIt first, ForwardIt last) { using T = typename iterator_traits<ForwardIt>::value_type; return vec_scan(first, last, T{}, plus<>{}); } template<class T, class Comp, class Cont=vector<T>> auto priority_queue_make(const Comp& comp, Cont&& cont={}) { return priority_queue<T,remove_reference_t<Cont>,Comp>(comp, forward<Cont>(cont)); } template<class T, class Comp> auto priority_queue_reserve(const Comp& comp, Int cap) { return priority_queue<T,vector<T>,Comp>(comp, vec_reserve<T>(cap)); } template<class T, size_t N, size_t... NS> struct ArrayType { using type = array<class ArrayType<T,NS...>::type,N>; }; template<class T, size_t N> struct ArrayType<T,N> { using type = array<T,N>; }; template<class T, size_t... NS> using Array = typename ArrayType<T,NS...>::type; template<class T, size_t N> T& array_at(Array<T,N>& ary, Int i) { return ary[i]; } template<class T, size_t N, size_t... NS, class... Args> T& array_at(Array<T,N,NS...>& ary, Int i, Args... args) { return array_at<T,NS...>(ary[i], args...); } template<class T, size_t N> const T& array_at(const Array<T,N>& ary, Int i) { return ary[i]; } template<class T, size_t N, size_t... NS, class... Args> const T& array_at(const Array<T,N,NS...>& ary, Int i, Args... args) { return array_at<T,NS...>(ary[i], args...); } template<class T, class C> T POP(stack<T,C>& stk) { T x = stk.top(); stk.pop(); return x; } template<class T, class C> T POP(queue<T,C>& que) { T x = que.front(); que.pop(); return x; } template<class T, class C, class Comp> T POP(priority_queue<T,C,Comp>& que) { T x = que.top(); que.pop(); return x; } // }}} // fixpoint {{{ template<class F> class FixPoint { public: explicit constexpr FixPoint(F&& f) : f_(forward<F>(f)) {} template<class... Args> constexpr decltype(auto) operator()(Args&&... args) const { return f_(*this, forward<Args>(args)...); } private: F f_; }; template<class F> constexpr decltype(auto) FIX(F&& f) { return FixPoint<F>(forward<F>(f)); } template<class F, size_t... NS> class FixPointMemo { public: explicit FixPointMemo(F&& f) : f_(forward<F>(f)) {} template<class... Args> decltype(auto) operator()(Args... args) const { using R = decltype(f_(*this,args...)); static Array<bool,NS...> done {}; static Array<R,NS...> memo; if(!array_at<bool,NS...>(done,args...)) { array_at<R,NS...>(memo,args...) = f_(*this,args...); array_at<bool,NS...>(done,args...) = true; } return array_at<R,NS...>(memo,args...); } private: F f_; }; template<size_t... NS, class F> decltype(auto) FIXMEMO(F&& f) { return FixPointMemo<F,NS...>(forward<F>(f)); } // }}} // math {{{ /*constexpr*/ Int GCD(Int a, Int b) noexcept { /*constexpr*/ auto f_gcd = FIX([](auto&& self, Int aa, Int bb) -> Int { if(bb == 0) return aa; return self(bb, aa%bb); }); return f_gcd(ABS(a), ABS(b)); } /*constexpr*/ Int LCM(Int a, Int b) noexcept { ASSERT(a != 0 && b != 0); /*constexpr*/ auto f_gcd = FIX([](auto&& self, Int aa, Int bb) -> Int { if(bb == 0) return aa; return self(bb, aa%bb); }); a = ABS(a); b = ABS(b); return a / f_gcd(a,b) * b; } /*constexpr*/ tuple<Int,Int,Int> EXTGCD(Int a, Int b) noexcept { /*constexpr*/ auto impl = FIX([](auto&& self, Int aa, Int bb, Int& x, Int& y) -> Int { if(bb == 0) { x = 1; y = 0; return aa; } Int g = self(bb, aa%bb, y, x); y -= (aa/bb)*x; return g; }); Int x{},y{}; Int g = impl(ABS(a), ABS(b), x, y); x *= SGN(a); y *= SGN(b); return make_tuple(g, x, y); } // }}} // string {{{ char chr_digit(Int n) { return char('0'+n); } Int ord_digit(char c) { return c-'0'; } char chr_lower(Int n) { return char('a'+n); } Int ord_lower(char c) { return c-'a'; } char chr_upper(Int n) { return char('A'+n); } Int ord_upper(char c) { return c-'A'; } auto str_reserve(Int cap) { string res; res.reserve(cap); return res; } // }}} // input {{{ template<class T> struct Integral1 { static_assert(is_integral<T>::value && !is_same<T,bool>::value, ""); }; using Int1 = Integral1<Int>; template<class T, class Enable=void> struct Scan { using R = T; static R scan(istream& in) { R res; in >> res; return res; } }; template<class T> struct Scan<Integral1<T>> { using R = T; static R scan(istream& in) { return Scan<R>::scan(in) - 1; } }; template<class T1, class T2> struct Scan<pair<T1,T2>> { using R1 = typename Scan<T1>::R; using R2 = typename Scan<T2>::R; using R = pair<R1,R2>; static R scan(istream& in) { R1 x = Scan<T1>::scan(in); R2 y = Scan<T2>::scan(in); return {x,y}; } }; template<class T> auto tuple_scan_impl(istream& in) { return make_tuple(Scan<T>::scan(in)); } template<class T, class... TS, SFINAE(sizeof...(TS) > 0)> auto tuple_scan_impl(istream& in) { auto head = make_tuple(Scan<T>::scan(in)); return tuple_cat(head, tuple_scan_impl<TS...>(in)); } template<class... TS> struct Scan<tuple<TS...>> { using R = decltype(tuple_scan_impl<TS...>(cin)); static R scan(istream& in) { return tuple_scan_impl<TS...>(in); } }; template<class T=Int> auto RD() { return Scan<T>::scan(cin); } template<class T=Int> auto RD1() { return RD<Integral1<T>>(); } template<class T=Int> auto RD_VEC(Int n) { auto res = vec_reserve<typename Scan<T>::R>(n); LOOP(n) { res.emplace_back(RD<T>()); } return res; } template<class T=Int> auto RD1_VEC(Int n) { return RD_VEC<Integral1<T>>(n); } template<class T=Int> auto RD_VEC2(Int h, Int w) { auto res = vec_reserve<vector<typename Scan<T>::R>>(h); LOOP(h) { res.emplace_back(RD_VEC<T>(w)); } return res; } template<class T=Int> auto RD1_VEC2(Int h, Int w) { return RD_VEC2<Integral1<T>>(h, w); } // }}} // output {{{ template<class T, class Enable=void> struct Fmt { static void fmt(ostream& out, const T& x) { out << x; } }; template<class T> void fmt_write(ostream& out, const T& x) { Fmt<T>::fmt(out, x); } template<class T> string FMT_STR(const T& x) { ostringstream out; fmt_write(out, x); return out.str(); } template<class... TS> struct Fmt<tuple<TS...>> { static void fmt(ostream& out, const tuple<TS...>& t) { tuple_enumerate(t, [&out](Int i, const auto& e) { if(i != 0) out << ' '; fmt_write(out, e); }); } }; template<class T1, class T2> struct Fmt<pair<T1,T2>> { static void fmt(ostream& out, const pair<T1,T2>& p) { return fmt_write(out, make_tuple(p.first,p.second)); } }; template<class C> struct Fmt<C,enable_if_t<is_container<C>::value>> { static void fmt(ostream& out, const C& c) { for(auto it = begin(c); it != end(c); ++it) { if(it != begin(c)) out << ' '; fmt_write(out, *it); } } }; void PRINT() {} template<class T, class... TS> void PRINT(const T& x, const TS&... args) { fmt_write(cout, x); if(sizeof...(args) > 0) { cout << ' '; PRINT(args...); } } template<class... TS> void PRINTLN(const TS&... args) { PRINT(args...); cout << '\n'; } // }}} // debug {{{ template<class T, class Enable=void> struct Dbg { static void dbg(ostream& out, const T& x) { out << x; } }; template<class T> void dbg_write(ostream& out, const T& x) { Dbg<T>::dbg(out, x); } template<class T> string DBG_STR(const T& x) { ostringstream out; dbg_write(out, x); return out.str(); } template<> struct Dbg<Int> { static void dbg(ostream& out, Int x) { if(x == INF) out << "INF"; else if(x == -INF) out << "-INF"; else out << x; } }; template<> struct Dbg<Real> { static void dbg(ostream& out, Real x) { if(EQ_EXACT(x, FINF)) out << "FINF"; else if(EQ_EXACT(x, -FINF)) out << "-FINF"; else out << x; } }; template<class T, size_t N> struct Dbg<T[N]> { static void dbg(ostream& out, const T (&ary)[N]) { out << "["; REP(i, N) { if(i != 0) out << ","; dbg_write(out, ary[i]); } out << "]"; } }; template<size_t N> struct Dbg<char[N]> { static void dbg(ostream& out, const char (&s)[N]) { out << s; } }; template<class... TS> struct Dbg<tuple<TS...>> { static void dbg(ostream& out, const tuple<TS...>& t) { out << "("; tuple_enumerate(t, [&out](Int i, const auto& e) { if(i != 0) out << ","; dbg_write(out, e); }); out << ")"; } }; template<class T1, class T2> struct Dbg<pair<T1,T2>> { static void dbg(ostream& out, const pair<T1,T2>& p) { return dbg_write(out, make_tuple(p.first,p.second)); } }; template<class C> struct Dbg<C,enable_if_t<is_container<C>::value>> { static void dbg(ostream& out, const C& c) { out << "["; for(auto it = begin(c); it != end(c); ++it) { if(it != begin(c)) out << ","; dbg_write(out, *it); } out << "]"; } }; template<class T, class C> struct Dbg<stack<T,C>> { static void dbg(ostream& out, stack<T,C> stk) { out << "["; while(!stk.empty()) { dbg_write(out,stk.top()); stk.pop(); if(!stk.empty()) out << ","; } out << "]"; } }; template<class T, class C> struct Dbg<queue<T,C>> { static void dbg(ostream& out, queue<T,C> que) { out << "["; while(!que.empty()) { dbg_write(out,que.front()); que.pop(); if(!que.empty()) out << ","; } out << "]"; } }; template<class T, class C, class Comp> struct Dbg<priority_queue<T,C,Comp>> { static void dbg(ostream& out, priority_queue<T,C,Comp> que) { out << "["; while(!que.empty()) { dbg_write(out,que.top()); que.pop(); if(!que.empty()) out << ","; } out << "]"; } }; template<class T> void DBG_IMPL(Int line, const char* expr, const T& value) { cerr << "[L " << line << "]: "; cerr << expr << " = "; dbg_write(cerr, value); cerr << "\n"; } void DBG_IMPL_HELPER() {} template<class T, class... TS> void DBG_IMPL_HELPER(const T& x, const TS&... args) { dbg_write(cerr, x); if(sizeof...(args) > 0) { cerr << ","; DBG_IMPL_HELPER(args...); } } template<class... TS> void DBG_IMPL(Int line, const char* expr, const TS&... value) { cerr << "[L " << line << "]: "; cerr << "(" << expr << ") = ("; DBG_IMPL_HELPER(value...); cerr << ")\n"; } template<size_t N, class T, SFINAE(rank<T>::value == 0)> void DBG_DP_IMPL_HELPER(ostream& out, const T& x, const array<Int,N>&, const array<Int,N>&) { dbg_write(out, x); } template<size_t N, class T, SFINAE(rank<T>::value > 0)> void DBG_DP_IMPL_HELPER(ostream& out, const T& x, const array<Int,N>& sizes, const array<Int,N>& offs) { Int k = N - rank<T>::value; Int off = offs[k]; Int siz = sizes[k]; if(siz == 0) siz = extent<T>::value - off; out << "["; FOR(i, off, off+siz) { if(i != off) out << ","; DBG_DP_IMPL_HELPER(out, x[i], sizes, offs); } out << "]"; } template<class T, SFINAE(rank<T>::value > 0)> void DBG_DP_IMPL(Int line, const char* expr, const T& dp, const array<Int,rank<T>::value>& sizes={}, const array<Int,rank<T>::value>& offs={}) { cerr << "[L " << line << "]: "; cerr << expr << " = "; DBG_DP_IMPL_HELPER<rank<T>::value>(cerr, dp, sizes, offs); cerr << "\n"; } template<class T> void DBG_GRID_IMPL(Int line, const char* expr, const vector<T>& grid) { cerr << "[L " << line << "]: "; cerr << expr << ":\n"; for(const auto& row : grid) { dbg_write(cerr, row); cerr << "\n"; } cerr << "\n"; } #ifdef PROCON_LOCAL #define DBG(args...) DBG_IMPL(__LINE__, CPP_STR_I(args), args) #define DBG_DP(args...) DBG_DP_IMPL(__LINE__, CPP_STR_I(args), args) #define DBG_GRID(args...) DBG_GRID_IMPL(__LINE__, CPP_STR_I(args), args) #else #define DBG(args...) #define DBG_DP(args...) #define DBG_GRID(args...) #endif // }}} // modint {{{ template<class Mod> class ModIntT { private: Int v_; // [0,Mod::value) static Int mod() { return Mod::value; } static Int normalize(Int x) { Int res = x % mod(); if(res < 0) res += mod(); return res; } public: ModIntT() : v_(0) {} ModIntT(Int v) : v_(normalize(v)) {} explicit operator Int() const { return v_; } ModIntT operator-() const { return ModIntT(-v_); } ModIntT& operator+=(ModIntT rhs) { v_ = normalize(v_ + rhs.v_); return *this; } ModIntT& operator-=(ModIntT rhs) { v_ = normalize(v_ - rhs.v_); return *this; } ModIntT& operator*=(ModIntT rhs) { v_ = normalize(v_ * rhs.v_); return *this; } ModIntT& operator++() { return *this += 1; } ModIntT& operator--() { return *this -= 1; } ModIntT operator++(int) { return exchange(*this, *this+1); } ModIntT operator--(int) { return exchange(*this, *this-1); } ModIntT pow(Int e) const { return fastpow(*this, e, ModIntT(1)); } ModIntT inv() const { Int g,x; tie(g,x,ignore) = EXTGCD(v_, mod()); ASSERT(g == 1); return ModIntT(x); } friend ModIntT operator+(ModIntT lhs, ModIntT rhs) { return ModIntT(lhs) += rhs; } friend ModIntT operator+(ModIntT lhs, Int rhs) { return ModIntT(lhs) += rhs; } friend ModIntT operator+(Int lhs, ModIntT rhs) { return ModIntT(rhs) += lhs; } friend ModIntT operator-(ModIntT lhs, ModIntT rhs) { return ModIntT(lhs) -= rhs; } friend ModIntT operator-(ModIntT lhs, Int rhs) { return ModIntT(lhs) -= rhs; } friend ModIntT operator-(Int lhs, ModIntT rhs) { return ModIntT(rhs) -= lhs; } friend ModIntT operator*(ModIntT lhs, ModIntT rhs) { return ModIntT(lhs) *= rhs; } friend ModIntT operator*(ModIntT lhs, Int rhs) { return ModIntT(lhs) *= rhs; } friend ModIntT operator*(Int lhs, ModIntT rhs) { return ModIntT(rhs) *= lhs; } friend bool operator==(ModIntT lhs, ModIntT rhs) { return Int(lhs) == Int(rhs); } friend bool operator==(ModIntT lhs, Int rhs) { return lhs == ModIntT(rhs); } friend bool operator==(Int lhs, ModIntT rhs) { return ModIntT(lhs) == rhs; } friend bool operator!=(ModIntT lhs, ModIntT rhs) { return !(lhs == rhs); } friend bool operator!=(ModIntT lhs, Int rhs) { return !(lhs == rhs); } friend bool operator!=(Int lhs, ModIntT rhs) { return !(lhs == rhs); } }; template<class Mod> struct ProconHash<ModIntT<Mod>> { size_t operator()(ModIntT<Mod> x) const noexcept { return procon_hash_value(Int(x)); } }; template<class Mod> struct Scan<ModIntT<Mod>> { using R = ModIntT<Mod>; static R scan(istream& in) { Int v = Scan<Int>::scan(in); return ModIntT<Mod>(v); } }; template<class Mod> struct Fmt<ModIntT<Mod>> { static void fmt(ostream& out, ModIntT<Mod> x) { fmt_write(out, Int(x)); } }; template<class Mod> struct Dbg<ModIntT<Mod>> { static void dbg(ostream& out, ModIntT<Mod> x) { dbg_write(out, Int(x)); } }; template<Int M> using ModIntC = ModIntT<integral_constant<Int,M>>; using ModInt = ModIntC<MOD>; // }}} // rng {{{ // http://prng.di.unimi.it/xoroshiro128plus.c struct ProconUrbg { using result_type = u64; static constexpr result_type min() { return numeric_limits<result_type>::min(); } static constexpr result_type max() { return numeric_limits<result_type>::max(); } ProconUrbg(u64 s0, u64 s1) : state_{s0,s1} {} result_type operator()() { u64 s0 = state_[0]; u64 s1 = state_[1]; u64 res = s0 + s1; s1 ^= s0; state_[0] = ((s0<<24)|(s0>>40)) ^ s1 ^ (s1<<16); state_[1] = (s1<<37)|(s1>>27); return res; } private: u64 state_[2]; }; ProconUrbg& PROCON_URBG() { static u64 s0 = u64(chrono::system_clock::now().time_since_epoch().count()); static u64 s1 = u64(&s0); static ProconUrbg urbg(s0, s1); return urbg; } // }}} // init {{{ struct ProconInit { ProconInit() { cin.tie(nullptr); ios::sync_with_stdio(false); cin.exceptions(ios::failbit | ios::badbit); cout << fixed << setprecision(COUT_PREC); #ifdef PROCON_LOCAL cerr << fixed << setprecision(2); #endif if(COUT_AUTOFLUSH) cout << unitbuf; } } PROCON_INIT; // }}} // }}} // graph {{{ auto udgraph_list(Int n, const vector<pair<Int,Int>>& es) { vector<vector<Int>> g(n); for(const auto& e : es) { Int a,b; tie(a,b) = e; g[a].emplace_back(b); g[b].emplace_back(a); } return g; } auto digraph_list(Int n, const vector<pair<Int,Int>>& es) { vector<vector<Int>> g(n); for(const auto& e : es) { Int a,b; tie(a,b) = e; g[a].emplace_back(b); } return g; } auto udgraph_matrix(Int n, const vector<pair<Int,Int>>& es) { vector<vector<Int>> g(n, vector<Int>(n,INF)); REP(i, n) { g[i][i] = 0; } for(const auto& e : es) { Int a,b; tie(a,b) = e; g[a][b] = g[b][a] = 1; } return g; } auto digraph_matrix(Int n, const vector<pair<Int,Int>>& es) { vector<vector<Int>> g(n, vector<Int>(n,INF)); REP(i, n) { g[i][i] = 0; } for(const auto& e : es) { Int a,b; tie(a,b) = e; g[a][b] = 1; } return g; } template<class T> auto wudgraph_list(Int n, const vector<tuple<Int,Int,T>>& es) { vector<vector<pair<Int,T>>> g(n); for(const auto& e : es) { Int a,b; T c; tie(a,b,c) = e; g[a].emplace_back(b, c); g[b].emplace_back(a, c); } return g; } template<class T> auto wdigraph_list(Int n, const vector<tuple<Int,Int,T>>& es) { vector<vector<pair<Int,T>>> g(n); for(const auto& e : es) { Int a,b; T c; tie(a,b,c) = e; g[a].emplace_back(b, c); } return g; } template<class T> auto wudgraph_matrix(Int n, const vector<tuple<Int,Int,T>>& es) { vector<vector<T>> g(n, vector<T>(n,PROCON_INF<T>()));; REP(i, n) { g[i][i] = T{}; } for(const auto& e : es) { Int a,b; T c; tie(a,b,c) = e; g[a][b] = g[b][a] = c; } return g; } template<class T> auto wdigraph_matrix(Int n, const vector<tuple<Int,Int,T>>& es) { vector<vector<T>> g(n, vector<T>(n,PROCON_INF<T>()));; REP(i, n) { g[i][i] = T{}; } for(const auto& e : es) { Int a,b; T c; tie(a,b,c) = e; g[a][b] = c; } return g; } // 単純無向グラフが木かどうか判定する // // g: 隣接リスト表現(頂点数 n > 0) bool graph_is_tree(const vector<vector<Int>>& g) { Int n = SIZE(g); ASSERT(n > 0); Int edge_cnt = 0; vector<bool> visited(n, false); auto dfs = FIX([&g,&edge_cnt,&visited](auto&& self, Int v) -> void { visited[v] = true; for(Int to : g[v]) { if(visited[to]) continue; ++edge_cnt; self(to); } }); dfs(0); bool connected = ALL(all_of, visited, [](bool b) { return b; }); return edge_cnt == n-1 && connected; } // BFSで重みなしグラフ上の単一始点最短経路を求める // // (ds,ps) を返す // ds[i]: start から点 i への最短距離(到達不能な点は INF) // ps[i]: 最短経路木における点 i の親(start および到達不能な点は -1) tuple<vector<Int>,vector<Int>> graph_bfs(const vector<vector<Int>>& g, Int start) { Int n = SIZE(g); vector<Int> ds(n, INF); vector<Int> ps(n, -1); queue<Int> que; que.emplace(start); ds[start] = 0; while(!que.empty()) { Int v = POP(que); for(Int to : g[v]) { if(ds[to] != INF) continue; que.emplace(to); ds[to] = ds[v] + 1; ps[to] = v; } } return make_tuple(ds, ps); } // ダイクストラ法 // // (ds,ps) を返す // ds[i]: start から点 i への最短距離(到達不能な点は PROCON_INF<T>()) // ps[i]: 最短経路木における点 i の親(start および到達不能な点は -1) template<typename T> tuple<vector<T>,vector<Int>> graph_dijkstra(const vector<vector<pair<Int,T>>>& g, Int start) { Int n = SIZE(g); vector<T> ds(n, PROCON_INF<T>()); vector<Int> ps(n, -1); auto que = priority_queue_make<pair<T,Int>>(greater<>{}); ds[start] = T{}; que.emplace(T{}, start); Int n_remain = n; while(!que.empty()) { T d; Int v; tie(d,v) = POP(que); if(ds[v] < d) continue; if(--n_remain == 0) break; for(const auto& p : g[v]) { Int to; T cost; tie(to,cost) = p; T d_new = d + cost; if(chmin(ds[to], d_new)) { ps[to] = v; que.emplace(d_new, to); } } } return make_tuple(ds, ps); } // 辺のコストが小さい非負整数の場合の最良優先探索(01-BFS の一般化) // 全ての辺のコストは [0,k] であること // // (ds,ps) を返す // ds[i]: start から点 i への最短距離(到達不能な点は INF) // ps[i]: 最短経路木における点 i の親(start および到達不能な点は -1) tuple<vector<Int>,vector<Int>> graph_k_bfs(const vector<vector<pair<Int,Int>>>& g, Int k, Int start) { Int n = SIZE(g); vector<Int> ds(n, INF); vector<Int> ps(n, -1); vector<queue<Int>> ques(k+1); auto enqueue = [&ques](Int to, Int cost) { ques[cost].emplace(to); }; auto dequeue = [&ques]() -> Int { for(auto& que : ques) if(!que.empty()) return POP(que); return -1; }; enqueue(start, 0); ds[start] = 0; Int v; while((v = dequeue()) != -1) { for(const auto& p : g[v]) { Int to,cost; tie(to,cost) = p; Int d_new = ds[v] + cost; if(chmin(ds[to], d_new)) { ps[to] = v; enqueue(to, cost); } } } return make_tuple(ds, ps); } // ベルマンフォード法 // // 負閉路が存在する場合、最短距離が負の無限大になる点が生じる。 // そのような点を全て検出するため、2*n 回ループしている // (一般的な実装の倍の回数。ただし更新がなくなったら打ち切る) // // (ds,ps) を返す // ds[i]: start から点 i への最短距離(到達不能なら INF, 負の無限大なら -INF) // ps[i]: 最短経路木における点 i の親(start および到達不能な点は -1) template<typename T> tuple<vector<T>,vector<Int>> graph_bellman(const vector<vector<pair<Int,T>>>& g, Int start) { Int n = SIZE(g); vector<T> ds(n, PROCON_INF<T>()); vector<Int> ps(n, -1); ds[start] = T{}; REP(i, 2*n) { bool update = false; REP(from, n) { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wfloat-equal" if(ds[from] == PROCON_INF<T>()) continue; for(const auto& p : g[from]) { Int to; T cost; tie(to,cost) = p; T d_new = ds[from]==-PROCON_INF<T>() ? -PROCON_INF<T>() : ds[from]+cost; if(d_new < ds[to]) { update = true; ds[to] = i >= n-1 ? -PROCON_INF<T>() : d_new; ps[to] = from; } } #pragma GCC diagnostic pop } if(!update) break; } return make_tuple(ds, ps); } // SPFA (Shortest Path Faster Algorithm) // // 理論上はベルマンフォードより速いはずだが、実際はそうでもなさげ // 最短距離が負の無限大になる点を全て検出するため 2*n 回ループしている // (一般的な実装の倍の回数。ただし更新がなくなったら打ち切る) // // (ds,ps) を返す // ds[i]: start から点 i への最短距離(到達不能なら INF, 負の無限大なら -INF) // ps[i]: 最短経路木における点 i の親(start および到達不能な点は -1) template<typename T> tuple<vector<T>,vector<Int>> graph_spfa(const vector<vector<pair<Int,T>>>& g, Int start) { Int n = SIZE(g); vector<T> ds(n, PROCON_INF<T>()); vector<Int> ps(n, -1); queue<Int> que; vector<bool> in_que(n, false); const auto enqueue = [&que,&in_que](Int v) { que.emplace(v); in_que[v] = true; }; const auto dequeue = [&que,&in_que]() { Int v = POP(que); in_que[v] = false; return v; }; ds[start] = T{}; enqueue(start); REP(i, 2*n) { REP(_, que.size()) { Int from = dequeue(); for(const auto& p : g[from]) { Int to; T cost; tie(to,cost) = p; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wfloat-equal" T d_new = ds[from]==-PROCON_INF<T>() ? -PROCON_INF<T>() : ds[from]+cost; if(d_new < ds[to]) { ds[to] = i >= n-1 ? -PROCON_INF<T>() : d_new; ps[to] = from; if(!in_que[to]) enqueue(to); } #pragma GCC diagnostic pop } } if(que.empty()) break; } return make_tuple(ds, ps); } // ワーシャルフロイド法 // // g は隣接行列 (g[from][to]) で、from == to の場合 0, from != to で辺 // がない場合 INF // // g は全点対間最短距離で上書きされる // (ok,nex) を返す // ok: 負閉路が存在しない場合に限り true // nex[i][j]: i から j へ最短経路で行くとき、次に辿るべき点(到達不能なら -1) template<typename T> tuple<bool,vector<vector<Int>>> graph_floyd(vector<vector<T>>& g) { Int n = SIZE(g); vector<vector<Int>> nex(n, vector<Int>(n,-1)); #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wfloat-equal" REP(i, n) REP(j, n) { if(g[i][j] != PROCON_INF<T>()) nex[i][j] = j; } REP(k, n) { REP(i, n) { if(g[i][k] == PROCON_INF<T>()) continue; REP(j, n) { if(g[k][j] == PROCON_INF<T>()) continue; if(chmin(g[i][j], g[i][k] + g[k][j])) { nex[i][j] = nex[i][k]; } if(i == j && g[i][j] < 0) return make_tuple(false, nex); } } } #pragma GCC diagnostic pop return make_tuple(true, nex); } // TODO: 重みあり/なし両対応 // トポロジカルソート // queue を MinHeap に変えると辞書順最小のものが求まる // // (ok,res) を返す // ok: DAGであったかどうか // res: 結果 tuple<bool,vector<Int>> graph_tsort(const vector<vector<Int>>& g) { Int n = SIZE(g); vector<Int> res; res.reserve(n); vector<Int> deg_in(n, 0); for(const auto& tos : g) for(auto to : tos) ++deg_in[to]; queue<Int> que; REP(v, n) { if(deg_in[v] == 0) que.emplace(v); } while(!que.empty()) { Int v = POP(que); res.emplace_back(v); for(auto to : g[v]) { if(--deg_in[to] > 0) continue; que.emplace(to); } } bool ok = SIZE(res) == n; return make_tuple(ok, res); } // TODO: 重みあり/なし両対応 // (関節点リスト,橋リスト) を返す tuple<vector<Int>,vector<pair<Int,Int>>> graph_lowlink(const vector<vector<Int>>& g) { Int n = SIZE(g); vector<Int> ord(n, -1); vector<Int> low(n, -1); vector<Int> articulations; vector<pair<Int,Int>> bridges; auto dfs = FIX([&g,&ord,&low,&articulations,&bridges](auto&& self, Int v, Int parent, Int k) -> void { low[v] = ord[v] = k; bool arti = false; Int n_child = 0; for(Int to : g[v]) { // 親または後退辺 if(ord[to] != -1) { if(to != parent) chmin(low[v], ord[to]); continue; } // 子を辿り、low[v] を更新 ++n_child; self(to, v, k+1); chmin(low[v], low[to]); // 関節点判定(根でない場合) if(parent != -1 && low[to] >= ord[v]) arti = true; // 橋判定 if(low[to] > ord[v]) bridges.emplace_back(minmax(v,to)); } // 関節点判定(根の場合) if(parent == -1 && n_child > 1) arti = true; if(arti) articulations.emplace_back(v); }); dfs(0, -1, 0); return make_tuple(articulations, bridges); } // 各頂点の (indegree,outdegree) のリストを返す (隣接リスト版) vector<pair<Int,Int>> graph_degrees_list(const vector<vector<Int>>& g) { Int n = SIZE(g); vector<pair<Int,Int>> res(n, {0,0}); REP(from, n) { for(Int to : g[from]) { ++res[from].second; ++res[to].first; } } return res; } // 各頂点の (indegree,outdegree) のリストを返す (隣接行列版) vector<pair<Int,Int>> graph_degrees_matrix(const vector<vector<Int>>& g) { Int n = SIZE(g); vector<pair<Int,Int>> res(n, {0,0}); REP(from, n) REP(to, n) { Int k = g[from][to]; res[from].second += k; res[to].first += k; } return res; } // グラフのオイラー路 (隣接リスト版) // // g は破壊される // start: 始点 // digraph: 有向グラフか? vector<Int> graph_euler_trail_list(vector<vector<Int>>& g, Int start, bool digraph) { // スタックオーバーフロー回避のため再帰を使わず自前の stack で処理 enum Action { CALL, RESUME }; vector<Int> res; stack<tuple<Action,Int>> stk; stk.emplace(CALL, start); while(!stk.empty()) { Action act; Int v; tie(act,v) = POP(stk); switch(act) { case CALL: stk.emplace(RESUME, v); while(!g[v].empty()) { Int to = g[v].back(); g[v].pop_back(); if(!digraph) g[to].erase(ALL(find, g[to], v)); stk.emplace(CALL, to); } break; case RESUME: res.emplace_back(v); break; default: ASSERT(false); } } ALL(reverse, res); return res; } // 無向グラフのオイラー路 (隣接行列版) // // g[v][w]: v,w 間の辺の本数 (破壊される) // start: 始点 // digraph: 有向グラフか? vector<Int> graph_euler_trail_matrix(vector<vector<Int>>& g, Int start, bool digraph) { // スタックオーバーフロー回避のため再帰を使わず自前の stack で処理 enum Action { CALL, RESUME }; Int n = SIZE(g); vector<Int> res; stack<tuple<Action,Int>> stk; stk.emplace(CALL, start); while(!stk.empty()) { Action act; Int v; tie(act,v) = POP(stk); switch(act) { case CALL: stk.emplace(RESUME, v); REP(to, n) { if(g[v][to] == 0) continue; --g[v][to]; if(!digraph) --g[to][v]; stk.emplace(CALL, to); } break; case RESUME: res.emplace_back(v); break; default: ASSERT(false); } } ALL(reverse, res); return res; } // }}} //-------------------------------------------------------------------- [[noreturn]] void impossible() { PRINTLN("-1"); EXIT(); } void solve() { Int N = RD(); auto E = RD_VEC<pair<Int1,Int1>>(N-1); auto G = udgraph_list(N, E); auto dp = vec_make<Int>(N,2, 0); auto dfs = FIX([&](auto&& self, Int v, Int p) -> void { dp[v][0] = 1; dp[v][1] = 0; for(Int to : G[v]) { if(to == p) continue; self(to, v); dp[v][0] += MAX(dp[to][0]-1, dp[to][1]); dp[v][1] += MAX(dp[to][0], dp[to][1]); } }); dfs(0, -1); DBG(dp); auto ans = MAX(dp[0][0], dp[0][1]); PRINTLN(ans); } signed main() { Int T = 1; //RD(); LOOP(T) { solve(); } EXIT(); }