結果
問題 | No.986 Present |
ユーザー |
![]() |
提出日時 | 2020-02-11 15:23:48 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 361 ms / 2,000 ms |
コード長 | 7,105 bytes |
コンパイル時間 | 1,880 ms |
コンパイル使用メモリ | 183,432 KB |
実行使用メモリ | 41,848 KB |
最終ジャッジ日時 | 2024-10-01 07:54:13 |
合計ジャッジ時間 | 6,560 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 30 |
ソースコード
#include <bits/stdc++.h>using namespace std;template <class T> vector<T> operator-(vector<T> a) {for (auto&& e : a) e = -e;return a;}template <class T> vector<T>& operator+=(vector<T>& l, const vector<T>& r) {l.resize(max(l.size(), r.size()));for (int i = 0; i < (int)r.size(); ++i) l[i] += r[i];return l;}template <class T> vector<T> operator+(vector<T> l, const vector<T>& r) {return l += r;}template <class T> vector<T>& operator-=(vector<T>& l, const vector<T>& r) {l.resize(max(l.size(), r.size()));for (int i = 0; i < (int)r.size(); ++i) l[i] -= r[i];return l;}template <class T> vector<T> operator-(vector<T> l, const vector<T>& r) {return l -= r;}template <class T> vector<T>& operator<<=(vector<T>& a, size_t n) {return a.insert(begin(a), n, 0), a;}template <class T> vector<T> operator<<(vector<T> a, size_t n) {return a <<= n;}template <class T> vector<T>& operator>>=(vector<T>& a, size_t n) {return a.erase(begin(a), begin(a) + min(a.size(), n)), a;}template <class T> vector<T> operator>>(vector<T> a, size_t n) {return a >>= n;}template <class T> vector<T> operator*(const vector<T>& l, const vector<T>& r) {if (l.empty() or r.empty()) return {};vector<T> res(l.size() + r.size() - 1);for (int i = 0; i < (int)l.size(); ++i)for (int j = 0; j < (int)r.size(); ++j) res[i + j] += l[i] * r[j];return res;}template <class T> vector<T>& operator*=(vector<T>& l, const vector<T>& r) {return l = l * r;}template <class T> vector<T> inverse(const vector<T>& a) {assert(not a.empty() and not (a[0] == 0));vector<T> b{1 / a[0]};while (b.size() < a.size()) {vector<T> x(begin(a), begin(a) + min(a.size(), 2 * b.size()));x *= b * b;b.resize(2 * b.size());for (auto i = b.size() / 2; i < min(x.size(), b.size()); ++i) b[i] = -x[i];}return {begin(b), begin(b) + a.size()};}template <class T> vector<T> operator/(vector<T> l, vector<T> r) {if (l.size() < r.size()) return {};reverse(begin(l), end(l)), reverse(begin(r), end(r));int n = l.size() - r.size() + 1;l.resize(n), r.resize(n);l *= inverse(r);return {rend(l) - n, rend(l)};}template <class T> vector<T>& operator/=(vector<T>& l, const vector<T>& r) {return l = l / r;}template <class T> vector<T> operator%(vector<T> l, const vector<T>& r) {if (l.size() < r.size()) return l;l -= l / r * r;return {begin(l), begin(l) + (r.size() - 1)};}template <class T> vector<T>& operator%=(vector<T>& l, const vector<T>& r) {return l = l % r;}template <class T> vector<T> derivative(const vector<T>& a) {vector<T> res(max((int)a.size() - 1, 0));for (int i = 0; i < (int)res.size(); ++i) res[i] = (i + 1) * a[i + 1];return res;}template <class T> vector<T> primitive(const vector<T>& a) {vector<T> res(a.size() + 1);for (int i = 1; i < (int)res.size(); ++i) res[i] = a[i - 1] / i;return res;}template <class T> vector<T> logarithm(const vector<T>& a) {assert(not a.empty() and a[0] == 1);auto res = primitive(derivative(a) * inverse(a));return {begin(res), begin(res) + a.size()};}template <class T> vector<T> exponent(const vector<T>& a) {assert(a.empty() or a[0] == 0);vector<T> b{1};while (b.size() < a.size()) {vector<T> x(begin(a), begin(a) + min(a.size(), 2 * b.size()));x[0] += 1;b.resize(2 * b.size());x -= logarithm(b);x *= {begin(b), begin(b) + b.size() / 2};for (auto i = b.size() / 2; i < min(x.size(), b.size()); ++i) b[i] = x[i];}return {begin(b), begin(b) + a.size()};}template <class T, class F = multiplies<T>>T power(T a, long long n, F op = multiplies<T>(), T e = {1}) {assert(n >= 0);while (n) {if (n & 1) e = op(e, a);if (n >>= 1) a = op(a, a);}return e;}template <unsigned M> struct modular {using m = modular;unsigned v;modular(long long a = 0) : v((a %= M) < 0 ? a + M : a) {}m operator-() const { return m() -= *this; }m& operator+=(m r) { if ((v += r.v) >= M) v -= M; return *this; }m& operator-=(m r) { if (v < r.v) v += M; v -= r.v; return *this; }m& operator*=(m r) { v = (uint64_t)v * r.v % M; return *this; }m& operator/=(m r) { return *this *= power(r, M - 2); }friend m operator+(m l, m r) { return l += r; }friend m operator-(m l, m r) { return l -= r; }friend m operator*(m l, m r) { return l *= r; }friend m operator/(m l, m r) { return l /= r; }friend bool operator==(m l, m r) { return l.v == r.v; }};template <unsigned M> void ntt(vector<modular<M>>& a, bool inverse) {static vector<modular<M>> dw(30), idw(30);if (dw[0] == 0) {modular<M> root = 2;while (power(root, (M - 1) / 2) == 1) root += 1;for (int i = 0; i < 30; ++i)dw[i] = -power(root, (M - 1) >> (i + 2)), idw[i] = 1 / dw[i];}int n = a.size();assert((n & (n - 1)) == 0);if (not inverse) {for (int m = n; m >>= 1; ) {modular<M> w = 1;for (int s = 0, k = 0; s < n; s += 2 * m) {for (int i = s, j = s + m; i < s + m; ++i, ++j) {auto x = a[i], y = a[j] * w;if (x.v >= M) x.v -= M;a[i].v = x.v + y.v, a[j].v = x.v + (M - y.v);}w *= dw[__builtin_ctz(++k)];}}} else {for (int m = 1; m < n; m *= 2) {modular<M> w = 1;for (int s = 0, k = 0; s < n; s += 2 * m) {for (int i = s, j = s + m; i < s + m; ++i, ++j) {auto x = a[i], y = a[j];a[i] = x + y, a[j].v = x.v + (M - y.v), a[j] *= w;}w *= idw[__builtin_ctz(++k)];}}}auto c = 1 / modular<M>(inverse ? n : 1);for (auto&& e : a) e *= c;}template <unsigned M>vector<modular<M>> operator*(vector<modular<M>> l, vector<modular<M>> r) {if (l.empty() or r.empty()) return {};int n = l.size(), m = r.size(), sz = 1 << __lg(2 * (n + m - 1) - 1);if (min(n, m) < 30) {vector<long long> res(n + m - 1);for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j)res[i + j] += (l[i] * r[j]).v;return {begin(res), end(res)};}bool eq = l == r;l.resize(sz), ntt(l, false);if (eq) r = l;else r.resize(sz), ntt(r, false);for (int i = 0; i < sz; ++i) l[i] *= r[i];ntt(l, true), l.resize(n + m - 1);return l;}constexpr long long mod = 998244353;using mint = modular<mod>;mint fn(int n, int m) {mint res = 1;for (int i = 0; i < n; ++i) {res *= power(mint(2), m) - power(mint(2), i);res /= i + 1;}return res;}int main() {cin.tie(nullptr);ios::sync_with_stdio(false);int n, m;cin >> n >> m;vector<vector<mint>> t(2 * n);for (int i = 0; i < n; ++i) {t[n + i] = {1, -power(mint(2), i + 1)};}for (int i = n; i-- > 1; ) {t[i] = t[2 * i] * t[2 * i + 1];}vector<mint> a{1};for (int l = n, r = 2 * n; l < r; l >>= 1, r >>= 1) {if (l & 1) {a *= t[l++];}if (r & 1) {a *= t[--r];}}a.resize(m - n + 1);a = inverse(a);mint res = accumulate(begin(a), end(a), mint(0));cout << power(mint(2), n).v << ' ' << fn(n, m).v << ' ' << res.v << '\n';}