結果
問題 | No.986 Present |
ユーザー | uwi |
提出日時 | 2020-02-11 15:24:46 |
言語 | Java21 (openjdk 21) |
結果 |
AC
|
実行時間 | 1,620 ms / 2,000 ms |
コード長 | 11,060 bytes |
コンパイル時間 | 4,376 ms |
コンパイル使用メモリ | 90,796 KB |
実行使用メモリ | 86,112 KB |
最終ジャッジ日時 | 2024-10-01 07:55:23 |
合計ジャッジ時間 | 26,941 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 74 ms
50,916 KB |
testcase_01 | AC | 72 ms
50,844 KB |
testcase_02 | AC | 71 ms
51,152 KB |
testcase_03 | AC | 957 ms
64,592 KB |
testcase_04 | AC | 235 ms
56,752 KB |
testcase_05 | AC | 821 ms
64,220 KB |
testcase_06 | AC | 600 ms
63,920 KB |
testcase_07 | AC | 157 ms
56,104 KB |
testcase_08 | AC | 379 ms
57,128 KB |
testcase_09 | AC | 1,132 ms
66,248 KB |
testcase_10 | AC | 120 ms
52,304 KB |
testcase_11 | AC | 824 ms
65,408 KB |
testcase_12 | AC | 622 ms
61,420 KB |
testcase_13 | AC | 134 ms
55,824 KB |
testcase_14 | AC | 216 ms
56,772 KB |
testcase_15 | AC | 1,499 ms
65,532 KB |
testcase_16 | AC | 468 ms
65,428 KB |
testcase_17 | AC | 1,127 ms
65,028 KB |
testcase_18 | AC | 966 ms
65,068 KB |
testcase_19 | AC | 672 ms
68,736 KB |
testcase_20 | AC | 165 ms
56,684 KB |
testcase_21 | AC | 1,457 ms
65,816 KB |
testcase_22 | AC | 1,255 ms
64,552 KB |
testcase_23 | AC | 560 ms
59,308 KB |
testcase_24 | AC | 1,620 ms
67,464 KB |
testcase_25 | AC | 341 ms
57,052 KB |
testcase_26 | AC | 1,553 ms
66,248 KB |
testcase_27 | AC | 1,057 ms
64,900 KB |
testcase_28 | AC | 687 ms
86,112 KB |
testcase_29 | AC | 697 ms
83,436 KB |
testcase_30 | AC | 134 ms
55,136 KB |
testcase_31 | AC | 697 ms
83,844 KB |
testcase_32 | AC | 661 ms
83,900 KB |
ソースコード
package contest200211; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.ArrayDeque; import java.util.Arrays; import java.util.InputMismatchException; import java.util.Queue; public class E3 { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(), m = ni(); long A = pow(2, n, mod); out.print(A + " "); long B = 1; long I = 1; for(long i = 0;i < n;i++) { B = B * (pow(2, n, mod) - pow(2, i, mod) + mod) % mod; } for(int i = 1;i <= n;i++) { I = I * i % mod; } B = B * invl(I, mod) % mod; if(B < 0)B += mod; // long[] h = new long[m-n+2]; // h[0] = 1; // for(int i = 0;i <= n;i++) { // long q = pow(2, i, mod); // for(int j = 1;j < h.length;j++) { // h[j] += h[j-1] * q; // h[j] %= mod; // } // } Queue<long[]> q = new ArrayDeque<>(); for(int i = 0;i <= n;i++) { q.add(new long[] {1, mod-pow(2, i, mod)}); } while(q.size() > 1) { long[] a = q.poll(); long[] b = q.poll(); q.add(mul(a, b, a.length+b.length-1)); } long[] h = Arrays.copyOf(q.poll(), m-n+2); h = inv(h); B = B * h[m-n] % mod; out.print(B + " "); out.println(h[m-n]); } public static int mod = 998244353; public static int G = 3; public static long[] mul(long[] a, long[] b) { return Arrays.copyOf(convoluteSimply(a, b, mod, G), a.length+b.length-1); } public static long[] mul(long[] a, long[] b, int lim) { return Arrays.copyOf(convoluteSimply(a, b, mod, G), lim); } public static long[] mulnaive(long[] a, long[] b) { long[] c = new long[a.length+b.length-1]; long big = 8L*mod*mod; for(int i = 0;i < a.length;i++){ for(int j = 0;j < b.length;j++){ c[i+j] += a[i]*b[j]; if(c[i+j] >= big)c[i+j] -= big; } } for(int i = 0;i < c.length;i++)c[i] %= mod; return c; } public static long[] mulnaive(long[] a, long[] b, int lim) { long[] c = new long[lim]; long big = 8L*mod*mod; for(int i = 0;i < a.length;i++){ for(int j = 0;j < b.length && i+j < lim;j++){ c[i+j] += a[i]*b[j]; if(c[i+j] >= big)c[i+j] -= big; } } for(int i = 0;i < c.length;i++)c[i] %= mod; return c; } public static long[] mul_(long[] a, long k) { for(int i = 0;i < a.length;i++)a[i] = a[i] * k % mod; return a; } public static long[] mul(long[] a, long k) { a = Arrays.copyOf(a, a.length); for(int i = 0;i < a.length;i++)a[i] = a[i] * k % mod; return a; } public static long[] add(long[] a, long[] b) { long[] c = new long[Math.max(a.length, b.length)]; for(int i = 0;i < a.length;i++)c[i] += a[i]; for(int i = 0;i < b.length;i++)c[i] += b[i]; for(int i = 0;i < c.length;i++)if(c[i] >= mod)c[i] -= mod; return c; } public static long[] add(long[] a, long[] b, int lim) { long[] c = new long[lim]; for(int i = 0;i < a.length && i < lim;i++)c[i] += a[i]; for(int i = 0;i < b.length && i < lim;i++)c[i] += b[i]; for(int i = 0;i < c.length;i++)if(c[i] >= mod)c[i] -= mod; return c; } public static long[] sub(long[] a, long[] b) { long[] c = new long[Math.max(a.length, b.length)]; for(int i = 0;i < a.length;i++)c[i] += a[i]; for(int i = 0;i < b.length;i++)c[i] -= b[i]; for(int i = 0;i < c.length;i++)if(c[i] < 0)c[i] += mod; return c; } public static long[] sub(long[] a, long[] b, int lim) { long[] c = new long[lim]; for(int i = 0;i < a.length && i < lim;i++)c[i] += a[i]; for(int i = 0;i < b.length && i < lim;i++)c[i] -= b[i]; for(int i = 0;i < c.length;i++)if(c[i] < 0)c[i] += mod; return c; } // F_{t+1}(x) = -F_t(x)^2*P(x) + 2F_t(x) // if want p-destructive, comment out flipping p just before returning. public static long[] inv(long[] p) { int n = p.length; long[] f = {invl(p[0], mod)}; for(int i = 0;i < p.length;i++){ if(p[i] == 0)continue; p[i] = mod-p[i]; } for(int i = 1;i < 2*n;i*=2){ long[] f2 = mul(f, f, Math.min(n, 2*i)); long[] f2p = mul(f2, Arrays.copyOf(p, i), Math.min(n, 2*i)); for(int j = 0;j < f.length;j++){ f2p[j] += 2L*f[j]; if(f2p[j] >= mod)f2p[j] -= mod; if(f2p[j] >= mod)f2p[j] -= mod; } f = f2p; } for(int i = 0;i < p.length;i++){ if(p[i] == 0)continue; p[i] = mod-p[i]; } return f; } public static final int[] NTTPrimes = {1053818881, 1051721729, 1045430273, 1012924417, 1007681537, 1004535809, 998244353, 985661441, 976224257, 975175681}; public static final int[] NTTPrimitiveRoots = {7, 6, 3, 5, 3, 3, 3, 3, 3, 17}; // public static final int[] NTTPrimes = {1012924417, 1004535809, 998244353, 985661441, 975175681, 962592769, 950009857, 943718401, 935329793, 924844033}; // public static final int[] NTTPrimitiveRoots = {5, 3, 3, 3, 17, 7, 7, 7, 3, 5}; public static long[] convoluteSimply(long[] a, long[] b, int P, int g) { int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2); long[] fa = nttmb(a, m, false, P, g); long[] fb = a == b ? fa : nttmb(b, m, false, P, g); for(int i = 0;i < m;i++){ fa[i] = fa[i]*fb[i]%P; } return nttmb(fa, m, true, P, g); } // static int[] wws = new int[270000]; // outer faster // Modifed Montgomery + Barrett private static long[] nttmb(long[] src, int n, boolean inverse, int P, int g) { long[] dst = Arrays.copyOf(src, n); int h = Integer.numberOfTrailingZeros(n); long K = Integer.highestOneBit(P)<<1; int H = Long.numberOfTrailingZeros(K)*2; long M = K*K/P; int[] wws = new int[1<<h-1]; long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P); long w = (1L<<32)%P; for(int k = 0;k < 1<<h-1;k++){ wws[k] = (int)w; w = modh(w*dw, M, H, P); } long J = invl(P, 1L<<32); for(int i = 0;i < h;i++){ for(int j = 0;j < 1<<i;j++){ for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){ long u = (dst[s] - dst[t] + 2*P)*wws[k]; dst[s] += dst[t]; if(dst[s] >= 2*P)dst[s] -= 2*P; // long Q = (u&(1L<<32)-1)*J&(1L<<32)-1; long Q = (u<<32)*J>>>32; dst[t] = (u>>>32)-(Q*P>>>32)+P; } } if(i < h-1){ for(int k = 0;k < 1<<h-i-2;k++)wws[k] = wws[k*2]; } } for(int i = 0;i < n;i++){ if(dst[i] >= P)dst[i] -= P; } for(int i = 0;i < n;i++){ int rev = Integer.reverse(i)>>>-h; if(i < rev){ long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d; } } if(inverse){ long in = invl(n, P); for(int i = 0;i < n;i++)dst[i] = modh(dst[i]*in, M, H, P); } return dst; } static final long mask = (1L<<31)-1; public static long modh(long a, long M, int h, int mod) { long r = a-((M*(a&mask)>>>31)+M*(a>>>31)>>>h-31)*mod; return r < mod ? r : r-mod; } public static int[][] enumFIF(int n, int mod) { int[] f = new int[n + 1]; int[] invf = new int[n + 1]; f[0] = 1; for (int i = 1; i <= n; i++) { f[i] = (int) ((long) f[i - 1] * i % mod); } long a = f[n]; long b = mod; long p = 1, q = 0; while (b > 0) { long c = a / b; long d; d = a; a = b; b = d % b; d = p; p = q; q = d - c * q; } invf[n] = (int) (p < 0 ? p + mod : p); for (int i = n - 1; i >= 0; i--) { invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod); } return new int[][] { f, invf }; } public static long C(int n, int r, int mod, int[][] fif) { if (n < 0 || r < 0 || r > n) return 0; return (long) fif[0][n] * fif[1][r] % mod * fif[1][n - r] % mod; } public static long invl(long a, long mod) { long b = mod; long p = 1, q = 0; while (b > 0) { long c = a / b; long d; d = a; a = b; b = d % b; d = p; p = q; q = d - c * q; } return p < 0 ? p + mod : p; } int rank(int[] a) { int n = a.length; for(int i = 0;i < n;i++) { int[] b = new int[n-1]; int p = 0; for(int j = 0;j < n;j++) { if(j == i)continue; b[p++] = a[i]; } if(span(b) == span(a)) { return rank(b); } } return n; } long span(int[] a) { long dp = 1; for(int v : a) { for(int j = 0;j < 64;j++) { if(dp<<~j<0) { dp |= 1L<<(j^v); } } } return dp; } public static long pow(long a, long n, long mod) { // a %= mod; long ret = 1; int x = 63 - Long.numberOfLeadingZeros(n); for (; x >= 0; x--) { ret = ret * ret % mod; if (n << 63 - x < 0) ret = ret * a % mod; } return ret; } void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms"); // Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){ // @Override // public void run() { // long s = System.currentTimeMillis(); // solve(); // out.flush(); // if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms"); // } // }; // t.start(); // t.join(); } public static void main(String[] args) throws Exception { new E3().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private long[] nal(int n) { long[] a = new long[n]; for(int i = 0;i < n;i++)a[i] = nl(); return a; } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[][] nmi(int n, int m) { int[][] map = new int[n][]; for(int i = 0;i < n;i++)map[i] = na(m); return map; } private int ni() { return (int)nl(); } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); } }