結果
| 問題 |
No.287 場合の数
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2020-02-18 19:50:59 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 10 ms / 5,000 ms |
| コード長 | 9,104 bytes |
| コンパイル時間 | 2,178 ms |
| コンパイル使用メモリ | 199,064 KB |
| 最終ジャッジ日時 | 2025-01-09 01:03:24 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 22 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
template <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >;
const int INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3fLL;
const double EPS = 1e-8;
const int MOD = 1000000007;
// const int MOD = 998244353;
const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
const int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
template <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); }
struct IOSetup {
IOSetup() {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
cout << fixed << setprecision(20);
}
} iosetup;
template <typename T>
function<vector<T>(const vector<T>&, const vector<T>&)> mul = [](const vector<T> &a, const vector<T> &b) {
int n = a.size(), m = b.size();
vector<T> res(n + m - 1, T(0));
REP(i, n) REP(j, m) res[i + j] += a[i] * b[j];
return res;
};
template <typename T>
function<bool(const T&, T&)> sqr = [](const T &a, T &res) {
return false;
};
template <typename T>
struct FPS {
vector<T> co;
FPS(int deg = 0) : co(deg + 1, T(0)) {}
FPS(const vector<T> &co) : co(co) {}
FPS(initializer_list<T> init) : co(init.begin(), init.end()) {}
template <typename InputIter> FPS(InputIter first, InputIter last) : co(first, last) {}
inline const T &operator[](int term) const { return co[term]; }
inline T &operator[](int term) { return co[term]; }
void resize(int deg) {
int prev = co.size();
co.resize(deg + 1);
if (prev < deg + 1) fill(co.begin() + prev, co.end(), T(0));
}
void shrink() { while (co.size() > 1 && co.back() == T(0)) co.pop_back(); }
int degree() const { return static_cast<int>(co.size()) - 1; }
FPS &operator=(const vector<T> &new_co) {
co.resize(new_co.size());
copy(ALL(new_co), co.begin());
return *this;
}
FPS &operator=(const FPS &x) {
co.resize(x.co.size());
copy(ALL(x.co), co.begin());
return *this;
}
FPS &operator+=(const FPS &x) {
int n = x.co.size();
if (n > co.size()) resize(n - 1);
REP(i, n) co[i] += x.co[i];
return *this;
}
FPS &operator-=(const FPS &x) {
int n = x.co.size();
if (n > co.size()) resize(n - 1);
REP(i, n) co[i] -= x.co[i];
return *this;
}
FPS &operator*=(T x) {
for (T &e : co) e *= x;
return *this;
}
FPS &operator*=(const FPS &x) { return *this = mul<T>(co, x.co); }
FPS &operator/=(T x) {
assert(x != T(0));
T inv_x = T(1) / x;
for (T &e : co) e *= inv_x;
return *this;
}
FPS &operator/=(const FPS &x) {
if (x.co.size() > co.size()) return *this = FPS();
int n = co.size() - x.co.size() + 1;
FPS a(co.rbegin(), co.rbegin() + n), b(x.co.rbegin(), x.co.rbegin() + min(static_cast<int>(x.co.size()), n));
b = b.inv(n - 1);
a *= b;
return *this = FPS(a.co.rend() - n, a.co.rend());
}
FPS &operator%=(const FPS &x) {
*this -= *this / x * x;
co.resize(static_cast<int>(x.co.size()) - 1);
if (co.empty()) co = {T(0)};
return *this;
}
FPS &operator<<=(int n) {
co.insert(co.begin(), n, T(0));
return *this;
}
FPS &operator>>=(int n) {
if (co.size() < n) return *this = FPS();
co.erase(co.begin(), co.begin() + n);
return *this;
}
bool operator==(const FPS &x) const {
FPS a(*this), b(x);
a.shrink(); b.shrink();
int n = a.co.size();
if (n != b.co.size()) return false;
REP(i, n) if (a.co[i] != b.co[i]) return false;
return true;
}
bool operator!=(const FPS &x) const { return !(*this == x); }
FPS operator+() const { return *this; }
FPS operator-() const {
FPS res(*this);
for (T &e : res.co) e = T(-e);
return res;
}
FPS operator+(const FPS &x) const { return FPS(*this) += x; }
FPS operator-(const FPS &x) const { return FPS(*this) -= x; }
FPS operator*(T x) const { return FPS(*this) *= x; }
FPS operator*(const FPS &x) const { return FPS(*this) *= x; }
FPS operator/(T x) const { return FPS(*this) /= x; }
FPS operator/(const FPS &x) const { return FPS(*this) /= x; }
FPS operator%(const FPS &x) const { return FPS(*this) %= x; }
FPS operator<<(int n) const { return FPS(*this) <<= n; }
FPS operator>>(int n) const { return FPS(*this) >>= n; }
T horner(T val) const {
T res = T(0);
for (int i = static_cast<int>(co.size()) - 1; i >= 0; --i) (res *= val) += co[i];
return res;
}
FPS differential() const {
int n = co.size();
assert(n >= 1);
FPS res(n - 1);
FOR(i, 1, n) res.co[i - 1] = co[i] * T(i);
return res;
}
FPS integral() const {
int n = co.size();
FPS res(n + 1);
REP(i, n) res[i + 1] = co[i] / T(i + 1);
return res;
}
FPS exp(int deg = -1) const {
assert(co[0] == T(0));
if (deg == -1) deg = static_cast<int>(co.size()) - 1;
FPS one({T(1)}), res = one;
for (int i = 1; i <= deg; i <<= 1) {
res *= FPS(co.begin(), co.begin() + min(static_cast<int>(co.size()), i << 1)) - res.log((i << 1) - 1) + one;
res.co.resize(i << 1);
}
res.co.resize(deg + 1);
return res;
}
FPS inv(int deg = -1) const {
assert(co[0] != T(0));
if (deg == -1) deg = static_cast<int>(co.size()) - 1;
FPS res({T(1) / co[0]});
for (int i = 1; i <= deg; i <<= 1) {
res = res + res - res * res * FPS(co.begin(), co.begin() + min(static_cast<int>(co.size()), i << 1));
res.co.resize(i << 1);
}
res.co.resize(deg + 1);
return res;
}
FPS log(int deg = -1) const {
assert(co[0] == T(1));
if (deg == -1) deg = static_cast<int>(co.size()) - 1;
FPS integrand = differential() * inv(deg - 1);
integrand.co.resize(deg);
return integrand.integral();
}
FPS pow(ll exponent, int deg = -1) const {
int n = co.size();
if (deg == -1) deg = n - 1;
REP(i, n) {
if (co[i] != T(0)) {
ll shift = exponent * i;
if (shift > deg) break;
T tmp = 1, base = co[i];
ll e = exponent;
while (e > 0) {
if (e & 1) tmp *= base;
base *= base;
e >>= 1;
}
return ((((*this >> i) * (T(1) / co[i])).log(deg - shift) * T(exponent)).exp(deg - shift) * tmp) << shift;
}
}
return FPS(deg);
}
FPS mod_pow(ll exponent, const FPS &md) const {
FPS inv_rev_md = FPS(md.co.rbegin(), md.co.rend()).inv();
int deg_of_md = md.co.size();
function<void(FPS&, const FPS&)> mod_mul = [&](FPS &multiplicand, const FPS &multiplier) {
multiplicand *= multiplier;
if (deg_of_md <= multiplicand.co.size()) {
int n = multiplicand.co.size() - deg_of_md + 1;
FPS quotient = FPS(multiplicand.co.rbegin(), multiplicand.co.rbegin() + n) * FPS(inv_rev_md.co.begin(), inv_rev_md.co.begin() + min(static_cast<int>(inv_rev_md.co.size()), n));
multiplicand -= FPS(quotient.co.rend() - n, quotient.co.rend()) * md;
}
multiplicand.co.resize(deg_of_md - 1);
if (multiplicand.co.empty()) multiplicand.co = {T(0)};
};
FPS res({T(1)}), base = *this;
mod_mul(base, res);
while (exponent > 0) {
if (exponent & 1) mod_mul(res, base);
mod_mul(base, base);
exponent >>= 1;
}
return res;
}
FPS sqrt(int deg = -1) const {
int n = co.size();
if (deg == -1) deg = n - 1;
if (co[0] == T(0)) {
FOR(i, 1, n) {
if (co[i] == T(0)) continue;
if (i & 1) return FPS(-1);
int shift = i >> 1;
if (deg < shift) break;
FPS res = (*this >> i).sqrt(deg - shift);
if (res.co.empty()) return FPS(-1);
res <<= shift;
res.resize(deg);
return res;
}
return FPS(deg);
}
T s;
if (!sqr<T>(co[0], s)) return FPS(-1);
FPS res({s});
T half = T(1) / T(2);
for (int i = 1; i <= deg; i <<= 1) {
(res += FPS(co.begin(), co.begin() + min(static_cast<int>(co.size()), i << 1)) * res.inv((i << 1) - 1)) *= half;
}
res.resize(deg);
return res;
}
FPS translate(T c) const {
int n = co.size();
vector<T> fact(n, T(1)), inv_fact(n, T(1));
FOR(i, 1, n) fact[i] = fact[i - 1] * T(i);
inv_fact[n - 1] = T(1) / fact[n - 1];
for (int i = n - 1; i > 0; --i) inv_fact[i - 1] = inv_fact[i] * T(i);
vector<T> g(n), ex(n);
REP(i, n) g[n - 1 - i] = co[i] * fact[i];
T pow_c = T(1);
REP(i, n) {
ex[i] = pow_c * inv_fact[i];
pow_c *= c;
}
vector<T> conv = mul<T>(g, ex);
FPS res(n - 1);
REP(i, n) res[i] = conv[n - 1 - i] * inv_fact[i];
return res;
}
};
int main() {
int n; cin >> n;
FPS<ll> fps(6 * n);
REP(i, n + 1) fps[i] = 1;
FPS<ll> ans = fps;
FOR(_, 1, 8) ans *= fps;
cout << ans[6 * n] << '\n';
return 0;
}
emthrm