結果
問題 | No.732 3PrimeCounting |
ユーザー | 👑 emthrm |
提出日時 | 2020-02-18 20:16:50 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 14,106 bytes |
コンパイル時間 | 2,118 ms |
コンパイル使用メモリ | 205,068 KB |
最終ジャッジ日時 | 2024-11-14 22:07:29 |
合計ジャッジ時間 | 2,722 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp:42:57: error: redefinition of 'template<class T> std::function<std::vector<_Tp>(const std::vector<_Tp>&, const std::vector<_Tp>&)> mul' 42 | function<vector<T>(const vector<T>&, const vector<T>&)> mul = [](const vector<T> &a, const vector<T> &b) { | ^~~ main.cpp:28:57: note: 'template<class T> std::function<std::vector<_Tp>(const std::vector<_Tp>&, const std::vector<_Tp>&)> mul<T>' previously declared here 28 | function<vector<T>(const vector<T>&, const vector<T>&)> mul = [](const vector<T> &a, const vector<T> &b) { | ^~~ main.cpp:50:30: error: redefinition of 'template<class T> std::function<bool(const T&, T&)> sqr' 50 | function<bool(const T&, T&)> sqr = [](const T &a, T &res) { | ^~~ main.cpp:36:30: note: 'template<class T> std::function<bool(const T&, T&)> sqr<T>' previously declared here 36 | function<bool(const T&, T&)> sqr = [](const T &a, T &res) { | ^~~
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; template <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >; const int INF = 0x3f3f3f3f; const ll LINF = 0x3f3f3f3f3f3f3f3fLL; const double EPS = 1e-8; const int MOD = 1000000007; // const int MOD = 998244353; const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; const int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } template <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); } struct IOSetup { IOSetup() { cin.tie(nullptr); ios_base::sync_with_stdio(false); cout << fixed << setprecision(20); } } iosetup; template <typename T> function<vector<T>(const vector<T>&, const vector<T>&)> mul = [](const vector<T> &a, const vector<T> &b) { int n = a.size(), m = b.size(); vector<T> res(n + m - 1, T(0)); REP(i, n) REP(j, m) res[i + j] += a[i] * b[j]; return res; }; template <typename T> function<bool(const T&, T&)> sqr = [](const T &a, T &res) { res = T(sqrt(a)); return true; }; template <typename T> function<vector<T>(const vector<T>&, const vector<T>&)> mul = [](const vector<T> &a, const vector<T> &b) { int n = a.size(), m = b.size(); vector<T> res(n + m - 1, T(0)); REP(i, n) REP(j, m) res[i + j] += a[i] * b[j]; return res; }; template <typename T> function<bool(const T&, T&)> sqr = [](const T &a, T &res) { return false; }; template <typename T> struct FPS { vector<T> co; FPS(int deg = 0) : co(deg + 1, T(0)) {} FPS(const vector<T> &co) : co(co) {} FPS(initializer_list<T> init) : co(init.begin(), init.end()) {} template <typename InputIter> FPS(InputIter first, InputIter last) : co(first, last) {} inline const T &operator[](int term) const { return co[term]; } inline T &operator[](int term) { return co[term]; } void resize(int deg) { int prev = co.size(); co.resize(deg + 1); if (prev < deg + 1) fill(co.begin() + prev, co.end(), T(0)); } void shrink() { while (co.size() > 1 && co.back() == T(0)) co.pop_back(); } int degree() const { return static_cast<int>(co.size()) - 1; } FPS &operator=(const vector<T> &new_co) { co.resize(new_co.size()); copy(ALL(new_co), co.begin()); return *this; } FPS &operator=(const FPS &x) { co.resize(x.co.size()); copy(ALL(x.co), co.begin()); return *this; } FPS &operator+=(const FPS &x) { int n = x.co.size(); if (n > co.size()) resize(n - 1); REP(i, n) co[i] += x.co[i]; return *this; } FPS &operator-=(const FPS &x) { int n = x.co.size(); if (n > co.size()) resize(n - 1); REP(i, n) co[i] -= x.co[i]; return *this; } FPS &operator*=(T x) { for (T &e : co) e *= x; return *this; } FPS &operator*=(const FPS &x) { return *this = mul<T>(co, x.co); } FPS &operator/=(T x) { assert(x != T(0)); T inv_x = T(1) / x; for (T &e : co) e *= inv_x; return *this; } FPS &operator/=(const FPS &x) { if (x.co.size() > co.size()) return *this = FPS(); int n = co.size() - x.co.size() + 1; FPS a(co.rbegin(), co.rbegin() + n), b(x.co.rbegin(), x.co.rbegin() + min(static_cast<int>(x.co.size()), n)); b = b.inv(n - 1); a *= b; return *this = FPS(a.co.rend() - n, a.co.rend()); } FPS &operator%=(const FPS &x) { *this -= *this / x * x; co.resize(static_cast<int>(x.co.size()) - 1); if (co.empty()) co = {T(0)}; return *this; } FPS &operator<<=(int n) { co.insert(co.begin(), n, T(0)); return *this; } FPS &operator>>=(int n) { if (co.size() < n) return *this = FPS(); co.erase(co.begin(), co.begin() + n); return *this; } bool operator==(const FPS &x) const { FPS a(*this), b(x); a.shrink(); b.shrink(); int n = a.co.size(); if (n != b.co.size()) return false; REP(i, n) if (a.co[i] != b.co[i]) return false; return true; } bool operator!=(const FPS &x) const { return !(*this == x); } FPS operator+() const { return *this; } FPS operator-() const { FPS res(*this); for (T &e : res.co) e = T(-e); return res; } FPS operator+(const FPS &x) const { return FPS(*this) += x; } FPS operator-(const FPS &x) const { return FPS(*this) -= x; } FPS operator*(T x) const { return FPS(*this) *= x; } FPS operator*(const FPS &x) const { return FPS(*this) *= x; } FPS operator/(T x) const { return FPS(*this) /= x; } FPS operator/(const FPS &x) const { return FPS(*this) /= x; } FPS operator%(const FPS &x) const { return FPS(*this) %= x; } FPS operator<<(int n) const { return FPS(*this) <<= n; } FPS operator>>(int n) const { return FPS(*this) >>= n; } T horner(T val) const { T res = T(0); for (int i = static_cast<int>(co.size()) - 1; i >= 0; --i) (res *= val) += co[i]; return res; } FPS differential() const { int n = co.size(); assert(n >= 1); FPS res(n - 1); FOR(i, 1, n) res.co[i - 1] = co[i] * T(i); return res; } FPS integral() const { int n = co.size(); FPS res(n + 1); REP(i, n) res[i + 1] = co[i] / T(i + 1); return res; } FPS exp(int deg = -1) const { assert(co[0] == T(0)); if (deg == -1) deg = static_cast<int>(co.size()) - 1; FPS one({T(1)}), res = one; for (int i = 1; i <= deg; i <<= 1) { res *= FPS(co.begin(), co.begin() + min(static_cast<int>(co.size()), i << 1)) - res.log((i << 1) - 1) + one; res.co.resize(i << 1); } res.co.resize(deg + 1); return res; } FPS inv(int deg = -1) const { assert(co[0] != T(0)); if (deg == -1) deg = static_cast<int>(co.size()) - 1; FPS res({T(1) / co[0]}); for (int i = 1; i <= deg; i <<= 1) { res = res + res - res * res * FPS(co.begin(), co.begin() + min(static_cast<int>(co.size()), i << 1)); res.co.resize(i << 1); } res.co.resize(deg + 1); return res; } FPS log(int deg = -1) const { assert(co[0] == T(1)); if (deg == -1) deg = static_cast<int>(co.size()) - 1; FPS integrand = differential() * inv(deg - 1); integrand.co.resize(deg); return integrand.integral(); } FPS pow(ll exponent, int deg = -1) const { int n = co.size(); if (deg == -1) deg = n - 1; REP(i, n) { if (co[i] != T(0)) { ll shift = exponent * i; if (shift > deg) break; T tmp = 1, base = co[i]; ll e = exponent; while (e > 0) { if (e & 1) tmp *= base; base *= base; e >>= 1; } return ((((*this >> i) * (T(1) / co[i])).log(deg - shift) * T(exponent)).exp(deg - shift) * tmp) << shift; } } return FPS(deg); } FPS mod_pow(ll exponent, const FPS &md) const { FPS inv_rev_md = FPS(md.co.rbegin(), md.co.rend()).inv(); int deg_of_md = md.co.size(); function<void(FPS&, const FPS&)> mod_mul = [&](FPS &multiplicand, const FPS &multiplier) { multiplicand *= multiplier; if (deg_of_md <= multiplicand.co.size()) { int n = multiplicand.co.size() - deg_of_md + 1; FPS quotient = FPS(multiplicand.co.rbegin(), multiplicand.co.rbegin() + n) * FPS(inv_rev_md.co.begin(), inv_rev_md.co.begin() + min(static_cast<int>(inv_rev_md.co.size()), n)); multiplicand -= FPS(quotient.co.rend() - n, quotient.co.rend()) * md; } multiplicand.co.resize(deg_of_md - 1); if (multiplicand.co.empty()) multiplicand.co = {T(0)}; }; FPS res({T(1)}), base = *this; mod_mul(base, res); while (exponent > 0) { if (exponent & 1) mod_mul(res, base); mod_mul(base, base); exponent >>= 1; } return res; } FPS sqrt(int deg = -1) const { int n = co.size(); if (deg == -1) deg = n - 1; if (co[0] == T(0)) { FOR(i, 1, n) { if (co[i] == T(0)) continue; if (i & 1) return FPS(-1); int shift = i >> 1; if (deg < shift) break; FPS res = (*this >> i).sqrt(deg - shift); if (res.co.empty()) return FPS(-1); res <<= shift; res.resize(deg); return res; } return FPS(deg); } T s; if (!sqr<T>(co[0], s)) return FPS(-1); FPS res({s}); T half = T(1) / T(2); for (int i = 1; i <= deg; i <<= 1) { (res += FPS(co.begin(), co.begin() + min(static_cast<int>(co.size()), i << 1)) * res.inv((i << 1) - 1)) *= half; } res.resize(deg); return res; } FPS translate(T c) const { int n = co.size(); vector<T> fact(n, T(1)), inv_fact(n, T(1)); FOR(i, 1, n) fact[i] = fact[i - 1] * T(i); inv_fact[n - 1] = T(1) / fact[n - 1]; for (int i = n - 1; i > 0; --i) inv_fact[i - 1] = inv_fact[i] * T(i); vector<T> g(n), ex(n); REP(i, n) g[n - 1 - i] = co[i] * fact[i]; T pow_c = T(1); REP(i, n) { ex[i] = pow_c * inv_fact[i]; pow_c *= c; } vector<T> conv = mul<T>(g, ex); FPS res(n - 1); REP(i, n) res[i] = conv[n - 1 - i] * inv_fact[i]; return res; } }; namespace FFT { using Real = long double; struct Complex { Real re, im; Complex(Real re = 0, Real im = 0) : re(re), im(im) {} inline Complex operator+(const Complex &x) const { return Complex(re + x.re, im + x.im); } inline Complex operator-(const Complex &x) const { return Complex(re - x.re, im - x.im); } inline Complex operator*(const Complex &x) const { return Complex(re * x.re - im * x.im, re * x.im + im * x.re); } inline Complex mul_real(Real r) const { return Complex(re * r, im * r); } inline Complex mul_pin(Real r) const { return Complex(-im * r, re * r); } inline Complex conj() const { return Complex(re, -im); } }; vector<int> butterfly{0}; vector<vector<Complex> > zeta{{{1, 0}}}; void calc(int n) { int prev_n = butterfly.size(); if (n <= prev_n) return; butterfly.resize(n); int prev_lg = zeta.size(), lg = __builtin_ctz(n); FOR(i, 1, prev_n) butterfly[i] <<= lg - prev_lg; FOR(i, prev_n, n) butterfly[i] = (butterfly[i >> 1] >> 1) | ((i & 1) << (lg - 1)); zeta.resize(lg); FOR(i, prev_lg, lg) { zeta[i].resize(1 << i); Real angle = -M_PI * 2 / (1 << (i + 1)); REP(j, 1 << (i - 1)) { zeta[i][j << 1] = zeta[i - 1][j]; Real theta = angle * ((j << 1) + 1); zeta[i][(j << 1) + 1] = {cos(theta), sin(theta)}; } } } void sub_dft(vector<Complex> &a) { int n = a.size(); // assert(__builtin_popcount(n) == 1); calc(n); int shift = __builtin_ctz(butterfly.size()) - __builtin_ctz(n); REP(i, n) { int j = butterfly[i] >> shift; if (i < j) swap(a[i], a[j]); } for (int block = 1; block < n; block <<= 1) { int den = __builtin_ctz(block); for (int i = 0; i < n; i += (block << 1)) REP(j, block) { Complex tmp = a[i + j + block] * zeta[den][j]; a[i + j + block] = a[i + j] - tmp; a[i + j] = a[i + j] + tmp; } } } template <typename T> vector<Complex> dft(const vector<T> &a) { int sz = a.size(), lg = 1; while ((1 << lg) < sz) ++lg; vector<Complex> c(1 << lg); REP(i, sz) c[i].re = a[i]; sub_dft(c); return c; } vector<Real> real_idft(vector<Complex> &a) { int n = a.size(), half = n >> 1, quarter = half >> 1; // assert(__builtin_popcount(n) == 1); calc(n); a[0] = (a[0] + a[half] + (a[0] - a[half]).mul_pin(1)).mul_real(0.5); int den = __builtin_ctz(half); FOR(i, 1, quarter) { int j = half - i; Complex tmp1 = a[i] + a[j].conj(), tmp2 = ((a[i] - a[j].conj()) * zeta[den][j]).mul_pin(1); a[i] = (tmp1 - tmp2).mul_real(0.5); a[j] = (tmp1 + tmp2).mul_real(0.5).conj(); } if (quarter > 0) a[quarter] = a[quarter].conj(); a.resize(half); sub_dft(a); reverse(a.begin() + 1, a.end()); Real r = 1.0 / half; vector<Real> res(n); REP(i, n) res[i] = (i & 1 ? a[i >> 1].im : a[i >> 1].re) * r; return res; } void idft(vector<Complex> &a) { int n = a.size(); sub_dft(a); reverse(a.begin() + 1, a.end()); Real r = 1.0 / n; REP(i, n) a[i] = a[i].mul_real(r); } template <typename T> vector<Real> convolution(const vector<T> &a, const vector<T> &b) { int a_sz = a.size(), b_sz = b.size(), sz = a_sz + b_sz - 1, lg = 1; while ((1 << lg) < sz) ++lg; int n = 1 << lg; vector<Complex> c(n); REP(i, a_sz) c[i].re = a[i]; REP(i, b_sz) c[i].im = b[i]; sub_dft(c); int half = n >> 1; c[0] = Complex(c[0].re * c[0].im, 0); FOR(i, 1, half) { Complex i_square = c[i] * c[i], j_square = c[n - i] * c[n - i]; c[i] = (j_square.conj() - i_square).mul_pin(0.25); c[n - i] = (i_square.conj() - j_square).mul_pin(0.25); } c[half] = Complex(c[half].re * c[half].im, 0); vector<Real> res = real_idft(c); res.resize(sz); return res; } }; vector<bool> sieve_of_eratosthenes(int val) { vector<bool> res(val + 1, true); res[0] = false; if (val >= 1) res[1] = false; for (int i = 2; i * i <= val; ++i) if (res[i]) { for (int j = i * i; j <= val; j += i) res[j] = false; } return res; } int main() { mul<ll> = [&](const vector<ll> &a, const vector<ll> &b) { vector<FFT::Real> conv = FFT::convolution(a, b); int n = conv.size(); vector<ll> res(n, 0); REP(i, n) res[i] = static_cast<ll>(roundl(conv[i])); return res; }; int n; cin >> n; vector<bool> primes = sieve_of_eratosthenes(3 * n); FPS<ll> fps(3 * n), fps2(3 * n); REP(i, n + 1) { if (primes[i]) { fps[i] = 1; fps2[i + i] = 1; } } fps2 *= fps; fps = fps * fps * fps; ll ans = 0, sub = 0; REP(i, 3 * n + 1) { if (primes[i]) { ans += fps[i]; sub += fps2[i]; } } cout << (ans - sub * 3) / 6 << '\n'; return 0; }