結果
問題 | No.665 Bernoulli Bernoulli |
ユーザー | rniya |
提出日時 | 2020-03-06 17:00:35 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 3,794 bytes |
コンパイル時間 | 1,601 ms |
コンパイル使用メモリ | 172,040 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-14 02:55:54 |
合計ジャッジ時間 | 2,532 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 3 ms
5,248 KB |
testcase_04 | AC | 3 ms
5,248 KB |
testcase_05 | AC | 3 ms
5,248 KB |
testcase_06 | AC | 3 ms
5,248 KB |
testcase_07 | AC | 3 ms
5,248 KB |
testcase_08 | AC | 3 ms
5,248 KB |
testcase_09 | AC | 3 ms
5,248 KB |
testcase_10 | AC | 3 ms
5,248 KB |
testcase_11 | AC | 3 ms
5,248 KB |
testcase_12 | AC | 3 ms
5,248 KB |
testcase_13 | AC | 3 ms
5,248 KB |
testcase_14 | AC | 3 ms
5,248 KB |
testcase_15 | AC | 3 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 3 ms
5,248 KB |
testcase_18 | AC | 3 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; const long long MOD=1e9+7; template<uint_fast64_t Modulus> class modint{ using u64=uint_fast64_t; public: u64 a; constexpr modint(const u64 x=0) noexcept:a(((x%Modulus)+Modulus)%Modulus){} constexpr u64 &value() noexcept{return a;} constexpr const u64 &value() const noexcept{return a;} constexpr modint &operator+=(const modint &rhs) noexcept{ a+=rhs.a; if (a>=Modulus) a-=Modulus; return *this; } constexpr modint operator+(const modint &rhs) const noexcept{ return modint(*this)+=rhs; } constexpr modint &operator++() noexcept{ return ++a,*this; } constexpr modint operator++(int) noexcept{ modint t=*this; return ++a,t; } constexpr modint &operator-=(const modint &rhs) noexcept{ if (a<rhs.a) a+=Modulus; a-=rhs.a; return *this; } constexpr modint operator-(const modint &rhs) const noexcept{ return modint(*this)-=rhs; } constexpr modint &operator--() noexcept{ return --a,*this; } constexpr modint operator--(int) noexcept{ modint t=*this; return --a,t; } constexpr modint &operator*=(const modint &rhs) noexcept{ a=a*rhs.a%Modulus; return *this; } constexpr modint operator*(const modint &rhs) const noexcept{ return modint(*this)*=rhs; } constexpr modint &operator/=(modint rhs) noexcept{ u64 exp=Modulus-2; while(exp){ if (exp&1) *this*=rhs; rhs*=rhs; exp>>=1; } return *this; } constexpr modint operator/(const modint &rhs) const noexcept{ return modint(*this)/=rhs; } constexpr modint operator-() const noexcept{ return modint(Modulus-a); } constexpr bool operator==(const modint &rhs) const noexcept{ return a==rhs.a; } constexpr bool operator!=(const modint &rhs) const noexcept{ return a!=rhs.a; } constexpr bool operator!() const noexcept{return !a;} friend constexpr modint pow(modint rhs,long long exp) noexcept{ modint res{1}; while(exp){ if (exp&1) res*=rhs; rhs*=rhs; exp>>=1; } return res; } template<class T> friend constexpr modint operator+(T x,modint y) noexcept{ return modint(x)+y; } template<class T> friend constexpr modint operator-(T x,modint y) noexcept{ return modint(x)-y; } template<class T> friend constexpr modint operator*(T x,modint y) noexcept{ return modint(x)*y; } template<class T> friend constexpr modint operator/(T x,modint y) noexcept{ return modint(x)/y; } friend ostream &operator<<(ostream &s,const modint &rhs) noexcept { return s << rhs.a; } friend istream &operator>>(istream &s,modint &rhs) noexcept { u64 a; rhs=modint{(s >> a,a)}; return s; } }; using mint=modint<MOD>; template<typename M> M Lagrange_Interpolation(vector<M> y,long long T){ int n=y.size()-1; if (T<=n) return y[T]; vector<M> dp(n+1,1),pd(n+1,1),fac(n+1,1),finv(n+1,1); for (int i=0;i<n;++i) dp[i+1]=dp[i]*(T-i); for (int i=n;i>0;--i) pd[i-1]=pd[i]*(T-i); for (int i=1;i<n+1;++i) fac[i]=fac[i-1]*i; finv[n]=M(1)/fac[n]; for (int i=n;i>0;--i) finv[i-1]=finv[i]*i; M res=0; for (int i=0;i<=n;++i){ M x=y[i]*dp[i]*pd[i]*finv[i]*finv[n-i]; if ((n-i)&1) res-=x; else res+=x; } return res; } int main(){ cin.tie(0); ios::sync_with_stdio(false); long long n,k; cin >> n >> k; vector<mint> A(k+2,0); for (int i=1;i<k+2;++i) A[i]=A[i-1]+pow((mint)i,k); mint ans=Lagrange_Interpolation(A,n); cout << ans << '\n'; }