結果
| 問題 |
No.199 星を描こう
|
| コンテスト | |
| ユーザー |
not_522
|
| 提出日時 | 2015-08-17 15:56:46 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 11,184 bytes |
| コンパイル時間 | 1,692 ms |
| コンパイル使用メモリ | 174,016 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-12-30 03:38:37 |
| 合計ジャッジ時間 | 2,632 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 25 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
namespace arithmetic {
template<typename T> class Addition {
public:
template<typename V> T operator+(const V& v) const {
return T(static_cast<const T&>(*this)) += v;
}
};
template<typename T> class Subtraction {
public:
template<typename V> T operator-(const V& v) const {
return T(static_cast<const T&>(*this)) -= v;
}
};
template<typename T> class Multiplication {
public:
template<typename V> T operator*(const V& v) const {
return T(static_cast<const T&>(*this)) *= v;
}
};
template<typename T> class Division {
public:
template<typename V> T operator/(const V& v) const {
return T(static_cast<const T&>(*this)) /= v;
}
};
template<typename T> class Modulus {
public:
template<typename V> T operator%(const V& v) const {
return T(static_cast<const T&>(*this)) %= v;
}
};
}
template<typename T> class IndivisibleArithmetic : public arithmetic::Addition<T>, public arithmetic::Subtraction<T>, public arithmetic::Multiplication<T> {};
template<typename T> class Arithmetic : public IndivisibleArithmetic<T>, public arithmetic::Division<T> {};
template<typename T> class Ordered {
public:
template<typename V> bool operator==(const V& v) const {
return !(static_cast<T>(v) < static_cast<const T&>(*this) || static_cast<const T&>(*this) < static_cast<T>(v));
}
template<typename V> bool operator!=(const V& v) const {
return static_cast<T>(v) < static_cast<const T&>(*this) || static_cast<const T&>(*this) < static_cast<T>(v);
}
template<typename V> bool operator>(const V& v) const {
return static_cast<T>(v) < static_cast<const T&>(*this);
}
template<typename V> bool operator<=(const V& v) const {
return !(static_cast<T>(v) < static_cast<const T&>(*this));
}
template<typename V> bool operator>=(const V& v) const {
return !(static_cast<const T&>(*this) < static_cast<T>(v));
}
};
template<typename T> inline T gcd(T a, T b) {
return __gcd(a, b);
}
template<typename T> inline T lcm(T a, T b) {
return a / gcd(a, b) * b;
}
template<typename T> inline T floor(T a, T b) {
return floor(a / b) * b <= a ? floor(a / b) : floor(a / b) - 1;
}
template<typename T> inline T ceil(T a, T b) {
return floor(a + b - 1, b);
}
template<typename T> inline T round(T a, T b) {
return floor(a + b / 2);
}
template<typename T> inline T mod(T a, T b) {
return a - floor(a, b) * b;
}
template<typename T> inline T factorial(T n) {
return n <= 1 ? 1 : factorial(n - 1) * n;
}
class Real : public Arithmetic<Real>, public arithmetic::Modulus<Real>, public Ordered<Real> {
private:
static long double EPS;
long double val;
operator long double() const {
return val;
}
public:
Real() {}
Real(long double val) : val(val) {}
Real operator-() const {
return -val;
}
template<typename T> Real operator+=(const T& r) {
val += static_cast<long double>(r);
return *this;
}
template<typename T> Real operator-=(const T& r) {
val -= static_cast<long double>(r);
return *this;
}
template<typename T> Real operator*=(const T& r) {
val *= static_cast<long double>(r);
return *this;
}
template<typename T> Real operator/=(const T& r) {
val /= static_cast<long double>(r);
return *this;
}
template<typename T> Real operator%=(const T& r) {
return *this = mod(*this, static_cast<Real>(r));
}
template<typename T> Real operator-(const T& v) const {
return Real(*this) -= v;
}
template<typename T> Real operator*(const T& v) const {
return Real(*this) *= v;
}
template<typename T> Real operator/(const T& v) const {
return Real(*this) /= v;
}
template<typename T> bool operator<(const T r) const {
return val < static_cast<long double>(r) - EPS;
}
Real abs() const {
return std::abs(val);
}
Real sqrt() const {
return std::sqrt(val);
}
long double toLongDouble() const {
return val;
}
};
long double Real::EPS = 1e-10;
inline ostream& operator<<(ostream& os, const Real& a) {
os << fixed << setprecision(15) << a.toLongDouble();
return os;
}
inline istream& operator>>(istream& is, Real& a) {
long double n;
is >> n;
a = n;
return is;
}
Real floor(const Real& r) {
return floor(r.toLongDouble());
}
class Point : public Arithmetic<Point>, public Ordered<Point> {
public:
Real x, y;
Point() {}
Point(const Real& x) : x(x), y(0) {}
Point(const Real& x, const Real& y) : x(x), y(y) {}
Point operator+=(const Point& p) {
x += p.x;
y += p.y;
return *this;
}
Point operator-=(const Point& p) {
x -= p.x;
y -= p.y;
return *this;
}
Point operator*=(const Point& p) {
Real xx = x * p.x - y * p.y;
y = x * p.y + y * p.x;
x = xx;
return *this;
}
Point operator*=(const Real& r) {
x *= r;
y *= r;
return *this;
}
Point operator/=(const Point& p) {
Real nrm = p.norm();
Real xx = (x * p.x + y * p.y) / nrm;
y = (y * p.x - x * p.y) / nrm;
x = xx;
return *this;
}
Point operator/=(const Real& r) {
x /= r;
y /= r;
return *this;
}
bool operator<(const Point& p) const {
return (x == p.x) ? y < p.y : x < p.x;
}
Real norm() const {
return x * x + y * y;
}
Real abs() const {
return norm().sqrt();
}
Point conj() const {
return Point(x, -y);
}
};
inline Point operator*(const Real& real, const Point& point) {
return point * real;
}
inline Point operator/(const Real& real, const Point& point) {
return point / real;
}
inline ostream& operator<<(ostream& os, const Point& point) {
os << point.x << " " << point.y;
return os;
}
inline istream& operator>>(istream& is, Point& point) {
Real x, y;
is >> x >> y;
point = Point(x, y);
return is;
}
class Line {
public:
Point a, b;
Line() {}
Line (const Point& a, const Point& b) : a(a), b(b) {}
bool operator==(const Line& line) const {
return ((line.vec() / vec()).y == 0) && (((line.a - a) / vec()).y == 0);
}
Point vec() const {
return b - a;
}
};
inline ostream& operator<<(ostream& os, const Line& line) {
os << line.a << " " << line.b;
return os;
}
inline istream& operator>>(istream& is, Line& line) {
Point a, b;
is >> a >> b;
line = Line(a, b);
return is;
}
class Segment : public Line, public Ordered<Segment> {
public:
Segment() {}
Segment (const Point& a, const Point& b) : Line(a, b) {}
bool operator<(const Segment& segment) const {
return a == segment.a ? b < segment.b : a < segment.a;
}
};
enum CCW{LEFT = 1, RIGHT = 2, BACK = 4, FRONT = 8, ON = 16};
int ccw(const Point& a, const Point& b, const Point& c) {
Point p = (c - a) / (b - a);
if (p.y > 0) return LEFT;
if (p.y < 0) return RIGHT;
if (p.x < 0) return BACK;
if (p.x > 1) return FRONT;
return ON;
}
int ccw(const Segment& segment, const Point& point) {
return ccw(segment.a, segment.b, point);
}
int ccw(const Line& line, const Point& point) {
int res = ccw(line.a, line.b, point);
if (res == BACK || res == FRONT) res = ON;
return res;
}
class Polygon : public vector<Point> {
public:
Polygon() {}
Polygon(int n) : vector<Point>(n) {}
Polygon(const initializer_list<Point>& p) : vector<Point>(p) {}
Polygon(const vector<Point>& p) : vector<Point>(p) {}
vector<Segment> getSides() const {
if (size() <= 1u) return {};
vector<Segment> res;
Point pre = back();
for (const auto& point : *this) {
res.emplace_back(pre, point);
pre = point;
}
return res;
}
vector<array<Point, 3>> getCorners() const {
if (size() <= 2u) return {};
vector<array<Point, 3>> res;
Point pre1 = *(end() - 2), pre2 = back();
for (const auto& point : *this) {
res.emplace_back(array<Point,3>({{pre1, pre2, point}}));
pre1 = pre2;
pre2 = point;
}
return res;
}
Point& operator[](int i) {
return vector::operator[](mod(i, (int)size()));
}
const Point& operator[](int i) const {
return vector::operator[](mod(i, (int)size()));
}
template<bool strict = false> bool cover(const Point& point) const {
bool res = false;
for (auto& side : getSides()) {
if (ccw(side, point) == ON) return strict ? false : true;
if (side.a.y > side.b.y) std::swap(side.a, side.b);
if (side.a.y <= point.y && point.y < side.b.y && ((side.b - point) / (side.a - point)).y > 0) res = !res;
}
return res;
}
};
template<bool strict = false> inline bool intersect(const Line& line1, const Line& line2) {
if (strict) return (line1.vec() / line2.vec()).y != 0;
return ((line1.vec() / line2.vec()).y != 0) || (line1 == line2);
}
template<bool strict = false> inline bool intersect(const Line& line, const Segment& segment) {
Point p1 = (segment.a - line.a) / line.vec(), p2 = (segment.b - line.a) / line.vec();
if (strict) return p1.y * p2.y < 0;
return p1.y * p2.y <= 0;
}
template<bool strict = false> inline bool intersect(const Segment& segment, const Line& line) {
return intersect(line, segment);
}
template<bool strict = false> inline bool intersect(const Segment& segment1, const Segment& segment2) {
int ccw1 = ccw(segment1, segment2.a) | ccw(segment1, segment2.b);
int ccw2 = ccw(segment2, segment1.a) | ccw(segment2, segment1.b);
if (strict) return (ccw1 & ccw2) == (LEFT | RIGHT);
return ((ccw1 & ccw2) == (LEFT | RIGHT)) || ((ccw1 | ccw2) & ON);
}
inline Point crossPoint(const Line& line1, const Line& line2) {
return line1.a + line1.vec() * ((line2.a - line1.a) / line2.vec()).y / (line1.vec() / line2.vec()).y;
}
template<bool strict = true> class ConvexPolygon : public Polygon {
public:
ConvexPolygon() {}
ConvexPolygon(int n) : Polygon(n) {}
ConvexPolygon(vector<Point> points) {
int flag = ~(strict ? LEFT : LEFT | FRONT);
sort(points.begin(), points.end());
for (int i = 0; i < (int)points.size(); emplace_back(points[i++])) {
while (size() > 1u && ccw(*(end() - 2), back(), points[i]) & flag) pop_back();
}
for (int i = points.size() - 2, r = size(); i >= 0; emplace_back(points[i--])) {
while ((int)size() > r && ccw(*(end() - 2), back(), points[i]) & flag) pop_back();
}
pop_back();
}
Real diameter() {
auto sides = getSides();
int i = min_element(sides.begin(), sides.end()) - sides.begin();
int j = max_element(sides.begin(), sides.end()) - sides.begin();
sides.insert(sides.end(), sides.begin(), sides.end());
Real res = 0;
for (int k = 0; k < 2 * size(); ++k) {
if ((sides[i].vec() / sides[j].vec()).y >= 0) ++i;
else ++j;
res = max(res, (sides[i].a - sides[j].a).abs());
}
return res;
}
ConvexPolygon cut(const Line& line) {
ConvexPolygon res;
auto sides = getSides();
for (const auto& side : sides) {
if (ccw(line, side.a) != RIGHT) res.push_back(side.a);
if (intersect<true>(line, side)) res.push_back(crossPoint(line, side));
}
return res;
}
};
int main() {
vector<Point> p(5);
for (auto& i : p) cin >> i;
cout << (ConvexPolygon<>(p).size() == 5 ? "YES" : "NO") << endl;
}
not_522