結果
問題 | No.948 Bomb vs Dush |
ユーザー | stoq |
提出日時 | 2020-03-15 08:25:14 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 10,514 bytes |
コンパイル時間 | 1,801 ms |
コンパイル使用メモリ | 177,396 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-05-03 11:07:17 |
合計ジャッジ時間 | 3,273 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
testcase_33 | AC | 2 ms
5,376 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | AC | 2 ms
5,376 KB |
testcase_36 | AC | 2 ms
5,376 KB |
testcase_37 | AC | 2 ms
5,376 KB |
testcase_38 | AC | 2 ms
5,376 KB |
testcase_39 | AC | 2 ms
5,376 KB |
testcase_40 | AC | 2 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; //#include <boost/multiprecision/cpp_int.hpp> //using multiInt = boost::multiprecision::cpp_int; using ll = long long int; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; template <typename Q_type> using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>; const int MOD_TYPE = 1; const ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353); const int INF = (int)1e9; const ll LINF = (ll)4e18; const ld DINF = 1e12; const ld PI = acos(-1.0); const ld EPS = 1e-11; #define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i) #define rep(i, n) REP(i, 0, n) #define MP make_pair #define MT make_tuple #define YES(n) cout << ((n) ? "YES" : "NO") << "\n" #define Yes(n) cout << ((n) ? "Yes" : "No") << endl #define Possible(n) cout << ((n) ? "Possible" : "Impossible") << endl #define possible(n) cout << ((n) ? "possible" : "impossible") << endl #define Yay(n) cout << ((n) ? "Yay!" : ":(") << endl #define all(v) v.begin(), v.end() #define NP(v) next_permutation(all(v)) #define dbg(x) cerr << #x << ":" << x << endl; vector<int> Dx = {0, 0, -1, 1, -1, 1, -1, 1, 0}; vector<int> Dy = {1, -1, 0, 0, -1, -1, 1, 1, 0}; //--------------------幾何ライブラリ-------------------- struct point_t { ld x, y; int exception = 0; inline void display() { if (exception == 0) cerr << "(" << x << ", " << y << ")\n"; else cerr << "exception:" << exception << "\n"; } constexpr point_t operator+(const point_t &p) const noexcept { return point_t{this->x + p.x, this->y + p.y}; } constexpr point_t operator-(const point_t &p) const noexcept { return point_t{this->x - p.x, this->y - p.y}; } constexpr point_t operator*(const ld &a) const noexcept { return point_t{this->x * a, this->y * a}; } constexpr point_t operator/(const ld &a) const noexcept { return point_t{this->x / a, this->y / a}; } }; struct line_t { ld a, b, c; int exception = 0; inline void display() { if (exception == 0) cerr << a << 'x' << (b < 0 ? "" : "+") << b << "y" << (c < 0 ? "" : "+") << c << "=0\n"; else cerr << "exception:" << exception << "\n"; } }; struct circle_t { point_t ce; ld r; int exception = 0; inline void display() { if (exception == 0) { cerr << "center:"; ce.display(); cerr << "r:" << r << "\n"; } else cerr << "exception:" << exception << "\n"; } }; struct rect_t { point_t l, r; //左下,右上 int exception = 0; inline void display() { if (exception == 0) { cerr << "l:"; l.display(); cerr << "r:"; r.display(); } else cerr << "exception:" << exception << "\n"; } }; using pp_t = pair<point_t, point_t>; inline bool Same(point_t &p1, point_t &p2) { return (abs(p1.x - p2.x) < EPS && abs(p1.y - p2.y) < EPS); } bool Same(line_t &l1, line_t &l2) { bool b1 = abs(l1.a * l2.b - l1.b * l2.a) < EPS; bool b2 = abs(l1.b * l2.c - l1.c * l2.b) < EPS; bool b3 = abs(l1.c * l2.a - l1.a * l2.c) < EPS; return (b1 && b2 && b3); } inline bool Same(circle_t &c1, circle_t &c2) { return (Same(c1.ce, c2.ce) && abs(c1.r - c2.r) < EPS); } inline bool PointOn(point_t &p, line_t &l) { return abs(l.a * p.x + l.b * p.y + l.c) < EPS; } inline bool PointOn(point_t &p, circle_t &c) { return abs((p.x - c.ce.x) * (p.x - c.ce.x) + (p.y - c.ce.y) * (p.y - c.ce.y) - c.r * c.r) < EPS; } inline bool Parallel(line_t &l1, line_t &l2) { return abs(l1.a * l2.b - l1.b * l2.a) < EPS; } inline ld Dist(point_t &p1, point_t &p2) { return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y)); } inline ld Dist(point_t &p, line_t &l) { return abs(l.a * p.x + l.b * p.y + l.c) / sqrt(l.a * l.a + l.b * l.b); } //M,Nに内分 inline point_t InternallyDivide(point_t &p1, point_t &p2, ld M, ld N) { return (p1 * N + p2 * M) / (M + N); } //M,Nに外分 inline point_t ExternallyDivide(point_t &p1, point_t &p2, ld M, ld N) { return (p1 * (-N) + p2 * M) / (M - N); } //中点 inline point_t MidP(point_t &p1, point_t &p2) { return (p1 + p2) / 2.0; } //点の回転 inline point_t Rotate(point_t &p, ld theta, point_t center = point_t{0.0, 0.0}) { return point_t{p.x * cos(theta) - p.y * sin(theta), p.x * sin(theta) + p.y * cos(theta)}; } //2点を通る直線の方程式 //p1 = p2の場合はexception = 1 line_t Line2p(point_t &p1, point_t &p2) { if (Same(p1, p2)) return line_t{0, 0, 0, 1}; line_t res; res.a = (p2.y - p1.y); res.b = (p1.x - p2.x); res.c = (p2.x - p1.x) * p1.y - (p2.y - p1.y) * p1.x; return res; } //2直線の交点 //2直線が一致する場合はexception = 1 //交わらない場合はexception = 2 point_t Intersection(line_t &l1, line_t &l2) { if (Parallel(l1, l2)) return Same(l1, l2) ? point_t{0, 0, 1} : point_t{0, 0, 2}; point_t res; res.x = (l1.b * l2.c - l1.c * l2.b) / (l1.a * l2.b - l1.b * l2.a); res.y = (l1.a * l2.c - l1.c * l2.a) / (l1.b * l2.a - l1.a * l2.b); return res; } //pを通りlに垂直な直線 line_t VerticalLine(point_t &p, line_t &l) { line_t res; res.a = l.b; res.b = -l.a; res.c = l.a * p.y - l.b * p.x; return res; } //p1,p2を端点とする線分の垂直二等分線 //2点が一致する場合はexception = 1 line_t VerticalBisector(point_t &p1, point_t &p2) { if (Same(p1, p2)) return line_t{0, 0, 0, 1}; point_t m = MidP(p1, p2); line_t l = Line2p(p1, p2); return VerticalLine(m, l); } //lに関してpと対称な点 point_t Reflect(point_t &p, line_t &l) { ld s = l.a * p.x + l.b * p.y + 2 * l.c; ld t = l.b * p.x - l.a * p.y; ld u = l.a * l.a + l.b * l.b; point_t res; res.x = (l.b * t - l.a * s) / u; res.y = (-l.b * s - l.a * t) / u; return res; } //pがcの内部なら1 //周上なら0 //外部なら-1 int InCircle(point_t &p, circle_t &c) { if (abs((p.x - c.ce.x) * (p.x - c.ce.x) + (p.y - c.ce.y) * (p.y - c.ce.y) - c.r * c.r) < EPS) return 0; else if ((p.x - c.ce.x) * (p.x - c.ce.x) + (p.y - c.ce.y) * (p.y - c.ce.y) - c.r * c.r < 0.0) return 1; else return -1; } //3点を通る円 //いずれかの2点が一致するならexception = 1 //3点が同一直線上にあるならexception = 2 circle_t Circle3p(point_t &p1, point_t &p2, point_t &p3) { if (Same(p1, p2) || Same(p2, p3) || Same(p3, p1)) return circle_t{point_t{0, 0}, 0, 1}; line_t l1 = VerticalBisector(p1, p2); line_t l2 = VerticalBisector(p1, p3); point_t center = Intersection(l1, l2); if (center.exception == 2) return circle_t{point_t{0, 0}, 0, 2}; circle_t res; res.ce = center; res.r = Dist(center, p1); return res; } //2円の共有点の個数 //2円が重なるときは3 int CommonP(circle_t &c1, circle_t &c2) { if (Same(c1, c2)) return 3; ld d = Dist(c1.ce, c2.ce); if (abs(d - c1.r - c2.r) < EPS || abs(d - c1.r + c2.r) < EPS) return 1; else if (d > c1.r + c2.r || d < abs(c1.r - c2.r)) return 0; else return 2; } //2円の2個の共有点を通る直線 //2円が接する場合は接線 //共有点がない場合はexception = 1 line_t CCLine(circle_t &c1, circle_t &c2) { line_t l; l.a = 2.0 * (c2.ce.x - c1.ce.x); l.b = 2.0 * (c2.ce.y - c1.ce.y); l.c = c1.ce.x * c1.ce.x - c2.ce.x * c2.ce.x; l.c += c1.ce.y * c1.ce.y - c2.ce.y * c2.ce.y; l.c += -c1.r * c1.r + c2.r * c2.r; return l; } //2点からの距離の比がM:Nの点の軌跡(アポロニウスの円) //M=Nの場合はexception = 1 //2点が重なる場合はexception = 2 circle_t Apollonius(point_t &p1, point_t &p2, ld M, ld N) { if (abs(M - N) < EPS) return circle_t{point_t{0, 0}, 0, 1}; circle_t res; res.ce = ExternallyDivide(p1, p2, M * M, N * N); res.r = sqrt(Dist(res.ce, p1) * Dist(res.ce, p2)); return res; } //円と直線の交点 //交点がない場合はexception = 1 pp_t Intersection(circle_t &c, line_t &l) { if (Dist(c.ce, l) > c.r + EPS) return make_pair(point_t{0, 0, 1}, point_t{0, 0, 1}); point_t res1, res2; ld d = l.a * c.ce.x + l.b * c.ce.y + l.c; ld sq = sqrt((l.a * l.a + l.b * l.b) * c.r * c.r - d * d); res1.x = c.ce.x + (-l.a * d + l.b * sq) / (l.a * l.a + l.b * l.b); res2.x = c.ce.x + (-l.a * d - l.b * sq) / (l.a * l.a + l.b * l.b); res1.y = c.ce.y + (-l.b * d - l.a * sq) / (l.a * l.a + l.b * l.b); res2.y = c.ce.y + (-l.b * d + l.a * sq) / (l.a * l.a + l.b * l.b); return make_pair(res1, res2); } //交点がない場合はexception = 1 //2円が一致する場合はexception = 2 pp_t Intersection(circle_t &c1, circle_t &c2) { if (CommonP(c1, c2) == 0) return MP(point_t{0, 0, 1}, point_t{0, 0, 1}); else if (Same(c1, c2)) return MP(point_t{0, 0, 2}, point_t{0, 0, 2}); point_t shift = c1.ce; c1.ce = c1.ce - shift, c2.ce = c2.ce - shift; line_t l = CCLine(c1, c2); pp_t res = Intersection(c1, l); res.first = res.first + shift; res.second = res.second + shift; return res; } //長方形の共通部分 //存在しない場合はexception = 1 rect_t Intersection(rect_t &r1, rect_t &r2) { rect_t res; pair<ld, int> sx[4] = { MP(r1.l.x, 0), MP(r1.r.x, 1), MP(r2.l.x, 2), MP(r2.r.x, 3), }; sort(sx, sx + 4); bool b1 = (sx[1].second == 1 && sx[2].second == 2 && sx[1].first < sx[2].first); bool b2 = (sx[1].second == 3 && sx[2].second == 0 && sx[1].first < sx[2].first); if (b1 || b2) return rect_t{{0, 0}, {0, 0}, 1}; res.l.x = sx[1].first; res.r.x = sx[2].first; pair<ld, int> sy[4] = { MP(r1.l.y, 0), MP(r1.r.y, 1), MP(r2.l.y, 2), MP(r2.r.y, 3), }; sort(sy, sy + 4); b1 = (sy[1].second == 1 && sy[2].second == 2 && sy[1].first < sy[2].first); b2 = (sy[1].second == 3 && sy[2].second == 0 && sy[1].first < sy[2].first); if (b1 || b2) return rect_t{{0, 0}, {0, 0}, 1}; res.l.y = sy[1].first; res.r.y = sy[2].first; return res; } //--------------------幾何ライブラリ-------------------- int main() { cin.tie(0); ios::sync_with_stdio(false); cout << setprecision(30) << setiosflags(ios::fixed); ld r, R; cin >> r >> R; point_t p1 = {R, 0}; ld lo = PI, hi = PI * 2.0; ld mi; rep(bi, 100) { mi = (lo + hi) / 2.0; point_t p2 = {R * cos(mi), R * sin(mi)}; if (Dist(p1, p2) >= 2 * r) lo = mi; else hi = mi; } ld t = lo; cout << t << endl; cout << PI * r * r + 0.5 * t * ((R + r) * (R + r) - (R - r) * (R - r)) << endl; return 0; }