結果

問題 No.117 組み合わせの数
ユーザー not_522not_522
提出日時 2015-08-20 15:04:46
言語 C++11
(gcc 13.3.0)
結果
AC  
実行時間 310 ms / 5,000 ms
コード長 5,368 bytes
コンパイル時間 1,387 ms
コンパイル使用メモリ 164,184 KB
実行使用メモリ 26,476 KB
最終ジャッジ日時 2024-07-18 10:53:17
合計ジャッジ時間 2,369 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 1
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
template<typename T> inline T gcd(T a, T b) {
return __gcd(a, b);
}
template<typename T> inline T lcm(T a, T b) {
return a / gcd(a, b) * b;
}
template<typename T> inline T floor(T a, T b) {
return floor(a / b) * b <= a ? floor(a / b) : floor(a / b) - 1;
}
template<typename T> inline T ceil(T a, T b) {
return floor(a + b - 1, b);
}
template<typename T> inline T round(T a, T b) {
return floor(a + b / 2);
}
template<typename T> inline T mod(T a, T b) {
return a - floor(a, b) * b;
}
template<typename T> inline T factorial(T n) {
return n <= 1 ? 1 : factorial(n - 1) * n;
}
template<typename T> inline T square(T n) {
return n * n;
}
template<typename T> inline T cube(T n) {
return n * n * n;
}
template<typename T> inline T norm(T x1, T y1, T x2, T y2) {
return square(x1 - x2) + square(y1 - y2);
}
inline long long sqrt(long long n) {
return sqrt((long double)n);
}
template<typename T> class Combination {
private:
vector<T> factorial;
public:
Combination(int n = 0) : factorial(n + 1, 1) {
for (int i = 1; i <= n; ++i) factorial[i] = factorial[i - 1] * i;
}
T partial_permutation(int n, int m) {
if (n < m) return 0;
if (n < (int)factorial.size()) return factorial[n] / factorial[n - m];
T res = 1;
for (int i = n; i > n - m; --i) res *= i;
return res;
}
T combination(int n, int m) {
if (n < m) return 0;
if (n < (int)factorial.size()) return factorial[n] / factorial[m] / factorial[n - m];
T res = 1;
for (int i = 0; i < min(m, n - m); ++i) res = res * (n - i) / (i + 1);
return res;
}
T combination_safety(int n, int m) {
m = min(m, n - m);
vector<int> a(m), b(m);
iota(a.begin(), a.end(), n - m + 1);
iota(b.begin(), b.end(), 1);
for (auto i : b) {
for (auto& j : a) {
auto g = gcd(i, j);
i /= g;
j /= g;
if (i == 1) break;
}
}
return accumulate(a.begin(), a.end(), T(1), multiplies<T>());
}
T repetition(int n, int m) {
if (m == 0) return 1;
return combination(n + m - 1, m);
}
};
namespace arithmetic {
template<typename T> class Addition {
public:
template<typename V> T operator+(const V& v) const {
return T(static_cast<const T&>(*this)) += v;
}
};
template<typename T> class Subtraction {
public:
template<typename V> T operator-(const V& v) const {
return T(static_cast<const T&>(*this)) -= v;
}
};
template<typename T> class Multiplication {
public:
template<typename V> T operator*(const V& v) const {
return T(static_cast<const T&>(*this)) *= v;
}
};
template<typename T> class Division {
public:
template<typename V> T operator/(const V& v) const {
return T(static_cast<const T&>(*this)) /= v;
}
};
template<typename T> class Modulus {
public:
template<typename V> T operator%(const V& v) const {
return T(static_cast<const T&>(*this)) %= v;
}
};
}
template<typename T> class IndivisibleArithmetic : public arithmetic::Addition<T>, public arithmetic::Subtraction<T>, public arithmetic
    ::Multiplication<T> {};
template<typename T> class Arithmetic : public IndivisibleArithmetic<T>, public arithmetic::Division<T> {};
class Inverse {
private:
long long mod;
vector<long long> inv;
public:
Inverse() {}
Inverse(long long mod, long long n = 1000000) : mod(mod) {
inv = vector<long long>(n, 1);
for (int i = 2; i < n; ++i) inv[i] = inv[mod % i] * (mod - mod / i) % mod;
}
long long operator()(long long a) const {
if (a < (int)inv.size()) return inv[a];
long long b = mod, x = 1, y = 0;
while (b) {
long long t = a / b;
swap(a -= t * b, b);
swap(x -= t * y, y);
}
return (x %= mod) < 0 ? x + mod : x;
}
};
class Mint : public Arithmetic<Mint> {
private:
static long long mod;
static Inverse inverse;
long long val;
public:
Mint() : val(0) {}
Mint(const long long& val) {
this->val = val % mod;
if (this->val < 0) this->val += mod;
}
static void setMod(const long long& m) {
mod = m;
inverse = Inverse(m);
}
Mint operator+=(const Mint& m) {
val += m.val;
if (val >= mod) val -= mod;
return *this;
}
Mint operator-=(const Mint& m) {
val -= m.val;
if (val < 0) val += mod;
return *this;
}
Mint operator*=(const Mint& m) {
val *= m.val;
val %= mod;
return *this;
}
Mint operator/=(const Mint& m) {
val *= inverse(m.val);
val %= mod;
return *this;
}
Mint operator++() {return val += 1;}
Mint operator--() {return val -= 1;}
operator long long() {
return val;
}
Mint identity() const {
return 1;
}
};
long long Mint::mod = 1000000007;
Inverse Mint::inverse(1000000007);
ostream& operator<<(ostream& os, Mint a) {
os << (long long)a;
return os;
}
istream& operator>>(istream& is, Mint& a) {
long long n;
is >> n;
a = n;
return is;
}
int main() {
Combination<Mint> comb(2000000);
int t;
cin >> t;
for (int i = 0; i < t; ++i) {
char c;
int n, k;
cin >> c;
cin.ignore();
cin >> n;
cin.ignore();
cin >> k;
cin.ignore();
switch (c) {
case 'C': cout << comb.combination(n, k) << endl; break;
case 'P': cout << comb.partial_permutation(n, k) << endl; break;
case 'H': cout << comb.repetition(n, k) << endl; break;
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0