結果
問題 | No.117 組み合わせの数 |
ユーザー | not_522 |
提出日時 | 2015-08-20 15:04:46 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 310 ms / 5,000 ms |
コード長 | 5,368 bytes |
コンパイル時間 | 1,387 ms |
コンパイル使用メモリ | 164,184 KB |
実行使用メモリ | 26,476 KB |
最終ジャッジ日時 | 2024-07-18 10:53:17 |
合計ジャッジ時間 | 2,369 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ソースコード
#include <bits/stdc++.h> using namespace std; template<typename T> inline T gcd(T a, T b) { return __gcd(a, b); } template<typename T> inline T lcm(T a, T b) { return a / gcd(a, b) * b; } template<typename T> inline T floor(T a, T b) { return floor(a / b) * b <= a ? floor(a / b) : floor(a / b) - 1; } template<typename T> inline T ceil(T a, T b) { return floor(a + b - 1, b); } template<typename T> inline T round(T a, T b) { return floor(a + b / 2); } template<typename T> inline T mod(T a, T b) { return a - floor(a, b) * b; } template<typename T> inline T factorial(T n) { return n <= 1 ? 1 : factorial(n - 1) * n; } template<typename T> inline T square(T n) { return n * n; } template<typename T> inline T cube(T n) { return n * n * n; } template<typename T> inline T norm(T x1, T y1, T x2, T y2) { return square(x1 - x2) + square(y1 - y2); } inline long long sqrt(long long n) { return sqrt((long double)n); } template<typename T> class Combination { private: vector<T> factorial; public: Combination(int n = 0) : factorial(n + 1, 1) { for (int i = 1; i <= n; ++i) factorial[i] = factorial[i - 1] * i; } T partial_permutation(int n, int m) { if (n < m) return 0; if (n < (int)factorial.size()) return factorial[n] / factorial[n - m]; T res = 1; for (int i = n; i > n - m; --i) res *= i; return res; } T combination(int n, int m) { if (n < m) return 0; if (n < (int)factorial.size()) return factorial[n] / factorial[m] / factorial[n - m]; T res = 1; for (int i = 0; i < min(m, n - m); ++i) res = res * (n - i) / (i + 1); return res; } T combination_safety(int n, int m) { m = min(m, n - m); vector<int> a(m), b(m); iota(a.begin(), a.end(), n - m + 1); iota(b.begin(), b.end(), 1); for (auto i : b) { for (auto& j : a) { auto g = gcd(i, j); i /= g; j /= g; if (i == 1) break; } } return accumulate(a.begin(), a.end(), T(1), multiplies<T>()); } T repetition(int n, int m) { if (m == 0) return 1; return combination(n + m - 1, m); } }; namespace arithmetic { template<typename T> class Addition { public: template<typename V> T operator+(const V& v) const { return T(static_cast<const T&>(*this)) += v; } }; template<typename T> class Subtraction { public: template<typename V> T operator-(const V& v) const { return T(static_cast<const T&>(*this)) -= v; } }; template<typename T> class Multiplication { public: template<typename V> T operator*(const V& v) const { return T(static_cast<const T&>(*this)) *= v; } }; template<typename T> class Division { public: template<typename V> T operator/(const V& v) const { return T(static_cast<const T&>(*this)) /= v; } }; template<typename T> class Modulus { public: template<typename V> T operator%(const V& v) const { return T(static_cast<const T&>(*this)) %= v; } }; } template<typename T> class IndivisibleArithmetic : public arithmetic::Addition<T>, public arithmetic::Subtraction<T>, public arithmetic::Multiplication<T> {}; template<typename T> class Arithmetic : public IndivisibleArithmetic<T>, public arithmetic::Division<T> {}; class Inverse { private: long long mod; vector<long long> inv; public: Inverse() {} Inverse(long long mod, long long n = 1000000) : mod(mod) { inv = vector<long long>(n, 1); for (int i = 2; i < n; ++i) inv[i] = inv[mod % i] * (mod - mod / i) % mod; } long long operator()(long long a) const { if (a < (int)inv.size()) return inv[a]; long long b = mod, x = 1, y = 0; while (b) { long long t = a / b; swap(a -= t * b, b); swap(x -= t * y, y); } return (x %= mod) < 0 ? x + mod : x; } }; class Mint : public Arithmetic<Mint> { private: static long long mod; static Inverse inverse; long long val; public: Mint() : val(0) {} Mint(const long long& val) { this->val = val % mod; if (this->val < 0) this->val += mod; } static void setMod(const long long& m) { mod = m; inverse = Inverse(m); } Mint operator+=(const Mint& m) { val += m.val; if (val >= mod) val -= mod; return *this; } Mint operator-=(const Mint& m) { val -= m.val; if (val < 0) val += mod; return *this; } Mint operator*=(const Mint& m) { val *= m.val; val %= mod; return *this; } Mint operator/=(const Mint& m) { val *= inverse(m.val); val %= mod; return *this; } Mint operator++() {return val += 1;} Mint operator--() {return val -= 1;} operator long long() { return val; } Mint identity() const { return 1; } }; long long Mint::mod = 1000000007; Inverse Mint::inverse(1000000007); ostream& operator<<(ostream& os, Mint a) { os << (long long)a; return os; } istream& operator>>(istream& is, Mint& a) { long long n; is >> n; a = n; return is; } int main() { Combination<Mint> comb(2000000); int t; cin >> t; for (int i = 0; i < t; ++i) { char c; int n, k; cin >> c; cin.ignore(); cin >> n; cin.ignore(); cin >> k; cin.ignore(); switch (c) { case 'C': cout << comb.combination(n, k) << endl; break; case 'P': cout << comb.partial_permutation(n, k) << endl; break; case 'H': cout << comb.repetition(n, k) << endl; break; } } }