結果
問題 | No.1009 面積の求め方 |
ユーザー | raooooo0__eeic |
提出日時 | 2020-03-20 21:23:24 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 3,710 bytes |
コンパイル時間 | 1,582 ms |
コンパイル使用メモリ | 168,800 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-12-15 03:16:30 |
合計ジャッジ時間 | 2,270 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 3 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 1 ms
6,820 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 1 ms
6,816 KB |
testcase_07 | AC | 1 ms
6,820 KB |
testcase_08 | AC | 1 ms
6,820 KB |
testcase_09 | AC | 1 ms
6,820 KB |
testcase_10 | AC | 1 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | AC | 2 ms
6,816 KB |
testcase_15 | AC | 2 ms
6,820 KB |
testcase_16 | AC | 2 ms
6,816 KB |
testcase_17 | AC | 2 ms
6,820 KB |
testcase_18 | AC | 1 ms
6,816 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; #define rep(i, a, b) for(int i = a; i < b; i++) #define rrep(i, a, b) for(int i = b - 1; i >= a; i--) #define ALL(a) a.begin(), a.end() #define pii pair<int,int> #pragma GCC optimize("Ofast") #define pcnt __builtin_popcount #define buli(x) __builtin_popcountll(x) #define pb push_back #define mp make_pair #define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() ); #define isSquare(x) (sqrt(x)*sqrt(x) == x) template<class T>bool chmax(T &a, const T &b) {if(a<b){a = b; return 1;} return 0; }; template<class T>bool chmin(T &a, const T &b) {if(a>b){a = b; return 1;} return 0; }; inline void IN(void){return;} template <typename First, typename... Rest> void IN(First& first, Rest&... rest){cin >> first;IN(rest...);return;} inline void OUT(void){cout << "\n";return;} template <typename First, typename... Rest> void OUT(First first, Rest... rest){cout << first << " ";OUT(rest...);return;} const double EPS = 1e-9; const int mod = 1e9 + 7; const int INF = 1e9; const long long LLINF = 1e18; long long lcm(ll a, ll b){return a * b / __gcd(a,b);} struct IoSetup { IoSetup() { cin.tie(nullptr);ios::sync_with_stdio(false); cout << fixed << setprecision(10); cerr << fixed << setprecision(10); } } iosetup; template< typename T1, typename T2 > ostream &operator<<(ostream &os, const pair< T1, T2 >& p) { os << p.first << " " << p.second; return os; } template< typename T1, typename T2 > istream &operator>>(istream &is, pair< T1, T2 > &p) { is >> p.first >> p.second; return is; } template< typename T > ostream &operator<<(ostream &os, const vector< T > &v) { for(int i = 0; i < (int) v.size(); i++) { os << v[i] << (i + 1 != v.size() ? " " : ""); } return os; } template< typename T > istream &operator>>(istream &is, vector< T > &v) { for(T &in : v) is >> in; return is; } template <typename T> void Exit(T first){cout << first << endl;exit(0); }; template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) {if((x += p.x) >= mod) x -= mod;return *this;} ModInt &operator-=(const ModInt &p) {if((x += mod - p.x) >= mod) x -= mod;return *this;} ModInt &operator*=(const ModInt &p) {x = (int) (1LL * x * p.x % mod);return *this;} ModInt &operator/=(const ModInt &p) {*this *= p.inverse();return *this;} ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const {int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); }return ModInt(u);} ModInt pow(int64_t n) const {ModInt ret(1), mul(x); while(n > 0) {if(n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;} friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x;} friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< mod >; const int dx[4] = {1, 0, -1, 0}; const int dy[4] = {0, 1, 0, -1}; int main(){ iosetup; int a, b; cin >> a >> b; double t = double( b - a) / 2.0; cout << t * t * t *4 / 3 << endl; return 0; }