結果

問題 No.1011 Infinite Stairs
ユーザー Sumitacchan
提出日時 2020-03-20 21:31:39
言語 C++14
(gcc 9.3.0)
結果
AC  
実行時間 360 ms / 2,000 ms
コード長 5,536 Byte
コンパイル時間 1,386 ms
使用メモリ 213,220 KB
最終ジャッジ日時 2020-04-30 12:00:28

テストケース

テストケース表示
入力 結果 実行時間
使用メモリ
testcase_00 AC 146 ms
213,204 KB
testcase_01 AC 162 ms
213,216 KB
testcase_02 AC 156 ms
213,220 KB
testcase_03 AC 170 ms
213,216 KB
testcase_04 AC 360 ms
213,208 KB
testcase_05 AC 147 ms
213,204 KB
testcase_06 AC 149 ms
213,216 KB
testcase_07 AC 152 ms
213,204 KB
testcase_08 AC 147 ms
213,216 KB
testcase_09 AC 149 ms
213,216 KB
testcase_10 AC 175 ms
213,220 KB
testcase_11 AC 147 ms
213,216 KB
testcase_12 AC 164 ms
213,220 KB
testcase_13 AC 146 ms
213,216 KB
testcase_14 AC 169 ms
213,220 KB
testcase_15 AC 243 ms
213,220 KB
testcase_16 AC 155 ms
213,216 KB
testcase_17 AC 203 ms
213,220 KB
testcase_18 AC 147 ms
213,212 KB
testcase_19 AC 146 ms
213,220 KB
testcase_20 AC 169 ms
213,216 KB
testcase_21 AC 192 ms
213,220 KB
testcase_22 AC 173 ms
213,220 KB
testcase_23 AC 176 ms
213,220 KB
testcase_24 AC 195 ms
213,216 KB
testcase_25 AC 155 ms
213,216 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
#include <bits/stdc++.h>
using namespace std;
/*#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<typename T> using gpp_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename L> using gpp_map = tree<T, L, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T> using gpp_multiset = tree<T, null_type, less_equal<T>, rb_tree_tag, tree_order_statistics_node_update>;*/
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define FOR(i, begin, end) for(int i=(begin);i<(end);i++)
#define REP(i, n) FOR(i,0,n)
#define IFOR(i, begin, end) for(int i=(end)-1;i>=(begin);i--)
#define IREP(i, n) IFOR(i,0,n)
#define Sort(v) sort(v.begin(), v.end())
#define Reverse(v) reverse(v.begin(), v.end())
#define all(v) v.begin(),v.end()
#define SZ(v) ((int)v.size())
#define Lower_bound(v, x) distance(v.begin(), lower_bound(v.begin(), v.end(), x))
#define Upper_bound(v, x) distance(v.begin(), upper_bound(v.begin(), v.end(), x))
#define Max(a, b) a = max(a, b)
#define Min(a, b) a = min(a, b)
#define bit(n) (1LL<<(n))
#define bit_exist(x, n) ((x >> n) & 1)
#define debug(x) cout << #x << "=" << x << endl;
#define vdebug(v) { cout << #v << "=" << endl; REP(i_debug, v.size()){ cout << v[i_debug] << ","; } cout << endl; }
#define mdebug(m) { cout << #m << "=" << endl; REP(i_debug, m.size()){ REP(j_debug, m[i_debug].size()){ cout << m[i_debug][j_debug] << ","; } cout << endl;} }
#define Return(ans) { cout << (ans) << endl; return 0; }
#define pb push_back
#define f first
#define s second
#define int long long
#define INF 1000000000000000000
template<typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; }
template<typename T> ostream &operator<<(ostream &os, vector<T> &v){ for(int i = 0; i < v.size(); i++) { cout << v[i]; if(i != v.size() - 1) cout << endl; }; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, pair<T1, T2> p){ cout << '(' << p.first << ',' << p.second << ')'; return os; }
template<typename T> void Out(T x) { cout << x << endl; }
template<typename T1, typename T2> void Ans(bool f, T1 y, T2 n) { if(f) Out(y); else Out(n); }

using vec = vector<int>;
using mat = vector<vec>;
using Pii = pair<int, int>;
using PiP = pair<int, Pii>;
using PPi = pair<Pii, int>;
using bools = vector<bool>;
using pairs = vector<Pii>;

//int dx[4] = {1,0,-1,0};
//int dy[4] = {0,1,0,-1};
//char d[4] = {'D','R','U','L'};

const int mod = 1000000007;
//const int mod = 998244353;
//#define Add(x, y) x = (x + (y)) % mod
//#define Mult(x, y) x = (x * (y)) % mod

template<long long MOD>
struct ModInt{

    using ll = long long;
    ll val;

    void setval(ll v) { val = v % MOD; };
    ModInt(): val(0) {}
    ModInt(ll v) { setval(v); };

    ModInt operator+(const ModInt &x) const { return ModInt(val + x.val); }
    ModInt operator-(const ModInt &x) const { return ModInt(val - x.val + MOD); }
    ModInt operator*(const ModInt &x) const { return ModInt(val * x.val); }
    ModInt operator/(const ModInt &x) const { return *this * x.inv(); }
    ModInt operator-() const { return ModInt(MOD - val); }
    ModInt operator+=(const ModInt &x) { return *this = *this + x; }
    ModInt operator-=(const ModInt &x) { return *this = *this - x; }
    ModInt operator*=(const ModInt &x) { return *this = *this * x; }
    ModInt operator/=(const ModInt &x) { return *this = *this / x; }

    friend ostream& operator<<(ostream &os, const ModInt &x) { os << x.val; return os; }
    friend istream& operator>>(istream &is, ModInt &x) { is >> x.val; x.val = (x.val % MOD + MOD) % MOD; return is; }

    ModInt pow(ll n) const {
        ModInt a = 1;
        if(n == 0) return a;
        int i0 = 64 - __builtin_clzll(n);
        for(int i = i0 - 1; i >= 0; i--){
            a = a * a;
            if((n >> i) & 1) a *= (*this); 
        }
        return a;
    }
    ModInt inv() const { return this->pow(MOD - 2); }
};

using mint = ModInt<mod>; mint pow(mint x, long long n) { return x.pow(n); }
//using mint = double; //for debug
using mvec = vector<mint>;
using mmat = vector<mvec>;

struct Combination{

    vector<mint> fact, invfact;

    Combination(int N){
        fact = vector<mint>({mint(1)});
        invfact = vector<mint>({mint(1)});
        fact_initialize(N);
    }

    void fact_initialize(int N){
        int i0 = fact.size();
        if(i0 >= N + 1) return;
        fact.resize(N + 1);
        invfact.resize(N + 1);
        for(int i = i0; i <= N; i++) fact[i] = fact[i - 1] * i;
        invfact[N] = (mint)1 / fact[N];
        for(int i = N - 1; i >= i0; i--) invfact[i] = invfact[i + 1] * (i + 1); 
    }

    mint nCr(int n, int r){
        if(n < 0 || r < 0 || r > n) return mint(0);
        if(fact.size() < n + 1) fact_initialize(n);
        return fact[n] * invfact[r] * invfact[n - r];
    }

    mint nPr(int n, int r){
        if(n < 0 || r < 0 || r > n) return mint(0);
        if(fact.size() < n + 1) fact_initialize(n);
        return fact[n] * invfact[n - r];
    }

};

mint dp[301][90001] = {};

signed main(){

    int N, d, K; cin >> N >> d >> K;
    
    dp[0][0] = 1;
    REP(i, N){
        FOR(j, 1, K + 1) dp[i][j] += dp[i][j - 1];
        FOR(j, 1, K + 1){
            dp[i + 1][j] = dp[i][j - 1];
            if(j - d - 1 >= 0) dp[i + 1][j] -= dp[i][j - d - 1];
        }
    }
    Out(dp[N][K]);

    return 0;
}
0