結果
| 問題 |
No.7 プライムナンバーゲーム
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-03-22 08:02:24 |
| 言語 | Common Lisp (sbcl 2.5.0) |
| 結果 |
AC
|
| 実行時間 | 10 ms / 5,000 ms |
| コード長 | 8,320 bytes |
| コンパイル時間 | 676 ms |
| コンパイル使用メモリ | 51,328 KB |
| 実行使用メモリ | 23,040 KB |
| 最終ジャッジ日時 | 2024-10-01 16:31:55 |
| 合計ジャッジ時間 | 1,182 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 17 |
コンパイルメッセージ
; compiling file "/home/judge/data/code/Main.lisp" (written 01 OCT 2024 04:31:53 PM): ; wrote /home/judge/data/code/Main.fasl ; compilation finished in 0:00:00.107
ソースコード
(eval-when (:compile-toplevel :load-toplevel :execute)
(sb-int:defconstant-eqx OPT
#+swank '(optimize (speed 3) (safety 2))
#-swank '(optimize (speed 3) (safety 0) (debug 0))
#'equal)
#+swank (ql:quickload '(:cl-debug-print :fiveam) :silent t)
#-swank (set-dispatch-macro-character
;; enclose the form with VALUES to avoid being captured by LOOP macro
#\# #\> (lambda (s c p) (declare (ignore c p)) `(values ,(read s nil nil t)))))
#+swank (cl-syntax:use-syntax cl-debug-print:debug-print-syntax)
#-swank (disable-debugger) ; for CS Academy
;; BEGIN_INSERTED_CONTENTS
(declaim (ftype (function * (values simple-bit-vector &optional)) make-prime-table))
(defun make-prime-table (sup)
"Returns a simple-bit-vector of length SUP, whose (0-based) i-th bit is 1 if i
is prime and 0 otherwise.
Example: (make-prime-table 10) => #*0011010100"
(declare (optimize (speed 3) (safety 0)))
(check-type sup (integer 2 (#.array-total-size-limit)))
(let ((table (make-array sup :element-type 'bit :initial-element 0))
(sup/64 (ceiling sup 64)))
;; special treatment for p = 2
(dotimes (i sup/64)
(setf (sb-kernel:%vector-raw-bits table i) #xAAAAAAAAAAAAAAAA))
(setf (sbit table 1) 0
(sbit table 2) 1)
;; p >= 3
(loop for p from 3 to (+ 1 (isqrt (- sup 1))) by 2
when (= 1 (sbit table p))
do (loop for composite from (* p p) below sup by p
do (setf (sbit table composite) 0)))
table))
;; FIXME: Currently the element type of the resultant vector is (UNSIGNED-BYTE 62).
(declaim (ftype (function * (values (simple-array (integer 0 #.most-positive-fixnum) (*))
simple-bit-vector
&optional))
make-prime-sequence))
(defun make-prime-sequence (sup)
"Returns the ascending sequence of primes smaller than SUP."
(declare (optimize (speed 3) (safety 0)))
(check-type sup (integer 2 (#.array-total-size-limit)))
(let ((table (make-prime-table sup)))
(let* ((length (count 1 table))
(result (make-array length :element-type '(integer 0 #.most-positive-fixnum)))
(index 0))
(declare ((integer 0 #.most-positive-fixnum) length))
(loop for x below sup
when (= 1 (sbit table x))
do (setf (aref result index) x)
(incf index))
(values result table))))
(defstruct (prime-data (:constructor %make-prime-data (seq table)))
(seq nil :type (simple-array (integer 0 #.most-positive-fixnum) (*)))
(table nil :type simple-bit-vector))
(defun make-prime-data (sup)
(multiple-value-call #'%make-prime-data (make-prime-sequence sup)))
(declaim (inline factorize)
(ftype (function * (values list &optional)) factorize))
(defun factorize (x prime-data)
"Returns the associative list of prime factors of X, which is composed
of (<prime> . <exponent>). E.g. (factorize 40 <prime-table>) => '((2 . 3) (5
. 1)).
- Any numbers beyond the range of PRIME-DATA are regarded as prime.
- The returned list is in descending order w.r.t. prime factors."
(declare (integer x))
(setq x (abs x))
(when (<= x 1)
(return-from factorize nil))
(let ((prime-seq (prime-data-seq prime-data))
result)
(loop for prime of-type unsigned-byte across prime-seq
do (when (= x 1)
(return-from factorize result))
(loop for exponent of-type (integer 0 #.most-positive-fixnum) from 0
do (multiple-value-bind (quot rem) (floor x prime)
(if (zerop rem)
(setf x quot)
(progn
(when (> exponent 0)
(push (cons prime exponent) result))
(loop-finish))))))
(if (= x 1)
result
(cons (cons x 1) result))))
(defun make-omega-table (sup prime-data)
"Returns the table of prime omega function on {0, 1, ..., SUP-1}."
(declare ((integer 0 #.most-positive-fixnum) sup))
;; (assert (>= (expt (aref prime-seq (- (length prime-seq) 1)) 2) (- sup 1)))
(let ((prime-seq (prime-data-seq prime-data))
(table (make-array sup :element-type '(unsigned-byte 32)))
(res (make-array sup :element-type '(unsigned-byte 8))))
(dotimes (i (length table))
(setf (aref table i) i))
(loop for p of-type (integer 0 #.most-positive-fixnum) across prime-seq
do (loop for i from p below sup by p
do (loop
(multiple-value-bind (quot rem) (floor (aref table i) p)
(if (zerop rem)
(progn (incf (aref res i))
(setf (aref table i) quot))
(return))))))
(loop for i below sup
unless (= 1 (aref table i))
do (incf (aref res i)))
res))
(defmacro dbg (&rest forms)
#+swank
(if (= (length forms) 1)
`(format *error-output* "~A => ~A~%" ',(car forms) ,(car forms))
`(format *error-output* "~A => ~A~%" ',forms `(,,@forms)))
#-swank (declare (ignore forms)))
(defmacro define-int-types (&rest bits)
`(progn
,@(mapcar (lambda (b) `(deftype ,(intern (format nil "UINT~A" b)) () '(unsigned-byte ,b))) bits)
,@(mapcar (lambda (b) `(deftype ,(intern (format nil "INT~A" b)) () '(signed-byte ,b))) bits)))
(define-int-types 2 4 7 8 15 16 31 32 62 63 64)
(declaim (inline println))
(defun println (obj &optional (stream *standard-output*))
(let ((*read-default-float-format* 'double-float))
(prog1 (princ obj stream) (terpri stream))))
(defconstant +mod+ 1000000007)
;;;
;;; Body
;;;
(defun main ()
(let* ((n (read))
(dp (make-array (+ n 1) :element-type 'bit :initial-element 1))
(pseq (make-prime-sequence (+ n 1))))
(declare (uint32 n))
(loop for x from 2 to n
when (loop for p across pseq
while (<= p x)
always (= (aref dp (- x p)) 1))
do (setf (aref dp x) 0))
(write-line
(if (= 1 (aref dp n))
"Win"
"Lose"))))
#-swank (main)
;;;
;;; Test and benchmark
;;;
#+swank
(defun io-equal (in-string out-string &key (function #'main) (test #'equal))
"Passes IN-STRING to *STANDARD-INPUT*, executes FUNCTION, and returns true if
the string output to *STANDARD-OUTPUT* is equal to OUT-STRING."
(labels ((ensure-last-lf (s)
(if (eql (uiop:last-char s) #\Linefeed)
s
(uiop:strcat s uiop:+lf+))))
(funcall test
(ensure-last-lf out-string)
(with-output-to-string (out)
(let ((*standard-output* out))
(with-input-from-string (*standard-input* (ensure-last-lf in-string))
(funcall function)))))))
#+swank
(defun get-clipbrd ()
(with-output-to-string (out)
(run-program "powershell.exe" '("-Command" "Get-Clipboard") :output out :search t)))
#+swank (defparameter *this-pathname* (uiop:current-lisp-file-pathname))
#+swank (defparameter *dat-pathname* (uiop:merge-pathnames* "test.dat" *this-pathname*))
#+swank
(defun run (&optional thing (out *standard-output*))
"THING := null | string | symbol | pathname
null: run #'MAIN using the text on clipboard as input.
string: run #'MAIN using the string as input.
symbol: alias of FIVEAM:RUN!.
pathname: run #'MAIN using the text file as input."
(let ((*standard-output* out))
(etypecase thing
(null
(with-input-from-string (*standard-input* (delete #\Return (get-clipbrd)))
(main)))
(string
(with-input-from-string (*standard-input* (delete #\Return thing))
(main)))
(symbol (5am:run! thing))
(pathname
(with-open-file (*standard-input* thing)
(main))))))
#+swank
(defun gen-dat ()
(uiop:with-output-file (out *dat-pathname* :if-exists :supersede)
(format out "")))
#+swank
(defun bench (&optional (out (make-broadcast-stream)))
(time (run *dat-pathname* out)))
;; To run: (5am:run! :sample)
#+swank
(it.bese.fiveam:test :sample
(it.bese.fiveam:is
(common-lisp-user::io-equal "5
"
"Win
"))
(it.bese.fiveam:is
(common-lisp-user::io-equal "12
"
"Lose
")))