結果
| 問題 |
No.187 中華風 (Hard)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2015-08-31 11:45:07 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,108 bytes |
| コンパイル時間 | 2,294 ms |
| コンパイル使用メモリ | 180,220 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-07-18 16:47:00 |
| 合計ジャッジ時間 | 8,216 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 24 WA * 1 |
ソースコード
#include <bits/stdc++.h>
#define rep(i, a) rep2 (i, 0, a)
#define rep2(i, a, b) for (int i = (a); i < (b); i++)
#define repr(i, a) repr2 (i, 0, a)
#define repr2(i, a, b) for (int i = (b) - 1; i >= (a); i--)
using namespace std;
typedef long long ll;
pair<ll, ll> extgcd(ll a, ll b) {
if (b == 0) return make_pair(1, 0);
auto p = extgcd(b, a % b);
return make_pair(p.second, p.first - a / b * p.second);
}
ll modulo(ll a, ll m) {
a %= m; a += m; a %= m;
return a;
}
ll modinv(ll a, ll m) {
if (a == 0) return -1;
if (__gcd(a, m) != 1) return -1;
return modulo(extgcd(a, m).first, m);
}
ll garner(vector<pair<ll, ll>> eq, ll m) {
int n = eq.size();
vector<ll> v;
v.push_back(eq[0].first);
rep2 (i, 1, n) {
if (eq[i].second == 1) continue;
ll coef = 1;
ll sum = 0;
rep (j, v.size()) {
sum += coef * v[j];
sum %= eq[i].second;
coef *= eq[j].second;
coef %= eq[i].second;
}
ll x = modulo(eq[i].first - sum, eq[i].second);
ll inv = modinv(coef, eq[i].second);
if (inv == -1) return -1;
ll u = x * inv % eq[i].second;
v.push_back(u);
}
ll res = 0;
ll coef = 1;
rep (i, v.size()) {
res += coef * v[i];
res %= m;
coef *= eq[i].second;
coef %= m;
}
return res;
}
map<ll, ll> primefactor(ll n) {
map<ll, ll> res;
for (ll i = 2; i * i <= n; i++) {
while (n % i == 0) {
res[i]++;
n /= i;
}
}
if (n != 1) res[n]++;
return res;
}
pair<ll, ll> solve_congruence(ll a1, ll m1, ll a2, ll m2) {
ll g = __gcd(m1, m2);
ll l = m1 / g * m2;
auto p = extgcd(m1, m2);
if ((a2 - a1) % g != 0) return make_pair(0, -1);
p.first *= (a2 - a1) / g;
ll x = p.first * m1 + a1;
x %= l; x += l; x %= l;
return make_pair(x, l);
}
bool check(vector<pair<ll, ll>> eq) {
rep (i, eq.size()) {
rep2 (j, i + 1, eq.size()) {
ll a1 = eq[i].first;
ll a2 = eq[j].first;
ll m1 = eq[i].second;
ll m2 = eq[j].second;
ll g = __gcd(m1, m2);
ll l = m1 / g * m2;
if ((a2 - a1) % g != 0) return false;
}
}
return true;
}
vector<pair<ll, ll>> normalize(vector<pair<ll, ll>> eq) {
vector<map<ll, ll>> pf(eq.size());
rep (i, eq.size()) {
pf[i] = primefactor(eq[i].second);
}
map<ll, pair<ll, ll>> pnum; // prime, value, index
rep (i, pf.size()) {
for (auto p : pf[i]) {
if (pnum[p.first].first < p.second) {
pnum[p.first].first = p.second;
pnum[p.first].second = i;
}
}
}
for (auto p : pnum) {
rep (i, eq.size()) if (i != p.second.second) {
while (eq[i].second % p.first == 0) {
eq[i].second /= p.first;
}
eq[i].first %= eq[i].second;
}
}
return eq;
}
template<class T1, class T2>
ostream &operator <<(ostream &os, const pair<T1, T2> &p) {
cout << "(" << p.first << ", " << p.second << ")";
return os;
}
int main() {
int n;
cin >> n;
vector<pair<ll, ll>> eq(n);
rep (i, n) cin >> eq[i].first >> eq[i].second;
if (!check(eq)) {
cout << -1 << endl;
return 0;
}
eq = normalize(eq);
const ll mod = 1e9 + 7;
ll ans = garner(eq, mod);
if (ans == 0) {
ll prod = 1;
rep (i, eq.size()) {
prod *= eq[i].second;
prod %= mod;
}
ans += prod;
}
cout << ans << endl;
return 0;
}