結果
問題 | No.187 中華風 (Hard) |
ユーザー | pekempey |
提出日時 | 2015-08-31 11:45:07 |
言語 | C++11 (gcc 11.4.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,108 bytes |
コンパイル時間 | 2,294 ms |
コンパイル使用メモリ | 180,220 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-18 16:47:00 |
合計ジャッジ時間 | 8,216 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,376 KB |
testcase_02 | AC | 210 ms
5,376 KB |
testcase_03 | AC | 206 ms
5,376 KB |
testcase_04 | AC | 327 ms
5,376 KB |
testcase_05 | AC | 328 ms
5,376 KB |
testcase_06 | AC | 320 ms
5,376 KB |
testcase_07 | AC | 331 ms
5,376 KB |
testcase_08 | AC | 425 ms
5,376 KB |
testcase_09 | AC | 415 ms
5,376 KB |
testcase_10 | AC | 418 ms
5,376 KB |
testcase_11 | AC | 316 ms
5,376 KB |
testcase_12 | AC | 328 ms
5,376 KB |
testcase_13 | AC | 266 ms
5,376 KB |
testcase_14 | AC | 228 ms
5,376 KB |
testcase_15 | AC | 209 ms
5,376 KB |
testcase_16 | AC | 215 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 268 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 317 ms
5,376 KB |
testcase_23 | WA | - |
testcase_24 | AC | 2 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> #define rep(i, a) rep2 (i, 0, a) #define rep2(i, a, b) for (int i = (a); i < (b); i++) #define repr(i, a) repr2 (i, 0, a) #define repr2(i, a, b) for (int i = (b) - 1; i >= (a); i--) using namespace std; typedef long long ll; pair<ll, ll> extgcd(ll a, ll b) { if (b == 0) return make_pair(1, 0); auto p = extgcd(b, a % b); return make_pair(p.second, p.first - a / b * p.second); } ll modulo(ll a, ll m) { a %= m; a += m; a %= m; return a; } ll modinv(ll a, ll m) { if (a == 0) return -1; if (__gcd(a, m) != 1) return -1; return modulo(extgcd(a, m).first, m); } ll garner(vector<pair<ll, ll>> eq, ll m) { int n = eq.size(); vector<ll> v; v.push_back(eq[0].first); rep2 (i, 1, n) { if (eq[i].second == 1) continue; ll coef = 1; ll sum = 0; rep (j, v.size()) { sum += coef * v[j]; sum %= eq[i].second; coef *= eq[j].second; coef %= eq[i].second; } ll x = modulo(eq[i].first - sum, eq[i].second); ll inv = modinv(coef, eq[i].second); if (inv == -1) return -1; ll u = x * inv % eq[i].second; v.push_back(u); } ll res = 0; ll coef = 1; rep (i, v.size()) { res += coef * v[i]; res %= m; coef *= eq[i].second; coef %= m; } return res; } map<ll, ll> primefactor(ll n) { map<ll, ll> res; for (ll i = 2; i * i <= n; i++) { while (n % i == 0) { res[i]++; n /= i; } } if (n != 1) res[n]++; return res; } pair<ll, ll> solve_congruence(ll a1, ll m1, ll a2, ll m2) { ll g = __gcd(m1, m2); ll l = m1 / g * m2; auto p = extgcd(m1, m2); if ((a2 - a1) % g != 0) return make_pair(0, -1); p.first *= (a2 - a1) / g; ll x = p.first * m1 + a1; x %= l; x += l; x %= l; return make_pair(x, l); } bool check(vector<pair<ll, ll>> eq) { rep (i, eq.size()) { rep2 (j, i + 1, eq.size()) { ll a1 = eq[i].first; ll a2 = eq[j].first; ll m1 = eq[i].second; ll m2 = eq[j].second; ll g = __gcd(m1, m2); ll l = m1 / g * m2; if ((a2 - a1) % g != 0) return false; } } return true; } vector<pair<ll, ll>> normalize(vector<pair<ll, ll>> eq) { vector<map<ll, ll>> pf(eq.size()); rep (i, eq.size()) { pf[i] = primefactor(eq[i].second); } map<ll, pair<ll, ll>> pnum; // prime, value, index rep (i, pf.size()) { for (auto p : pf[i]) { if (pnum[p.first].first < p.second) { pnum[p.first].first = p.second; pnum[p.first].second = i; } } } for (auto p : pnum) { rep (i, eq.size()) if (i != p.second.second) { while (eq[i].second % p.first == 0) { eq[i].second /= p.first; } eq[i].first %= eq[i].second; } } return eq; } template<class T1, class T2> ostream &operator <<(ostream &os, const pair<T1, T2> &p) { cout << "(" << p.first << ", " << p.second << ")"; return os; } int main() { int n; cin >> n; vector<pair<ll, ll>> eq(n); rep (i, n) cin >> eq[i].first >> eq[i].second; if (!check(eq)) { cout << -1 << endl; return 0; } eq = normalize(eq); const ll mod = 1e9 + 7; ll ans = garner(eq, mod); if (ans == 0) { ll prod = 1; rep (i, eq.size()) { prod *= eq[i].second; prod %= mod; } ans += prod; } cout << ans << endl; return 0; }