結果
問題 | No.931 Multiplicative Convolution |
ユーザー |
![]() |
提出日時 | 2020-04-20 21:18:40 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 151 ms / 2,000 ms |
コード長 | 6,743 bytes |
コンパイル時間 | 2,589 ms |
コンパイル使用メモリ | 203,560 KB |
最終ジャッジ日時 | 2025-01-09 22:01:11 |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 14 |
ソースコード
#include <bits/stdc++.h>using namespace std;using ll = long long;using pii = pair<int, int>;template <class T>using V = vector<T>;template <class T>using VV = V<V<T>>;#define pb push_back#define eb emplace_back#define mp make_pair#define fi first#define se second#define rep(i, n) rep2(i, 0, n)#define rep2(i, m, n) for (int i = m; i < (n); i++)#define ALL(c) (c).begin(), (c).end()constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); }template <class T, class U>void chmin(T& t, const U& u) {if (t > u) t = u;}template <class T, class U>void chmax(T& t, const U& u) {if (t < u) t = u;}template <class T, class U>ostream& operator<<(ostream& os, const pair<T, U>& p) {os << "(" << p.first << "," << p.second << ")";return os;}template <class T>ostream& operator<<(ostream& os, const vector<T>& v) {os << "{";rep(i, v.size()) {if (i) os << ",";os << v[i];}os << "}";return os;}#ifdef LOCALvoid debug_out() { cerr << endl; }template <typename Head, typename... Tail>void debug_out(Head H, Tail... T) {cerr << " " << H;debug_out(T...);}#define debug(...) \cerr << __LINE__ << " [" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)#define dump(x) cerr << __LINE__ << " " << #x << " = " << (x) << endl#else#define debug(...) (void(0))#define dump(x) (void(0))#endiftemplate <unsigned int MOD>struct ModInt {using uint = unsigned int;using ull = unsigned long long;using M = ModInt;uint v;ModInt(ll _v = 0) { set_norm(_v % MOD + MOD); }M& set_norm(uint _v) { //[0, MOD * 2)->[0, MOD)v = (_v < MOD) ? _v : _v - MOD;return *this;}explicit operator bool() const { return v != 0; }M operator+(const M& a) const { return M().set_norm(v + a.v); }M operator-(const M& a) const { return M().set_norm(v + MOD - a.v); }M operator*(const M& a) const { return M().set_norm(ull(v) * a.v % MOD); }M operator/(const M& a) const { return *this * a.inv(); }M& operator+=(const M& a) { return *this = *this + a; }M& operator-=(const M& a) { return *this = *this - a; }M& operator*=(const M& a) { return *this = *this * a; }M& operator/=(const M& a) { return *this = *this / a; }M operator-() const { return M() - *this; }M& operator++(int) { return *this = *this + 1; }M& operator--(int) { return *this = *this - 1; }M pow(ll n) const {if (n < 0) return inv().pow(-n);M x = *this, res = 1;while (n) {if (n & 1) res *= x;x *= x;n >>= 1;}return res;}M inv() const {ll a = v, b = MOD, p = 1, q = 0, t;while (b != 0) {t = a / b;swap(a -= t * b, b);swap(p -= t * q, q);}return M(p);}bool operator==(const M& a) const { return v == a.v; }bool operator!=(const M& a) const { return v != a.v; }friend ostream& operator<<(ostream& os, const M& a) { return os << a.v; }static int get_mod() { return MOD; }};using Mint = ModInt<998244353>;// depend on ModInt, must use NTT friendly modtemplate <class D>struct NumberTheoreticTransform {D root;V<D> roots = {0, 1};V<int> rev = {0, 1};int base = 1, max_base = -1;void init() {int mod = D::get_mod();int tmp = mod - 1;max_base = 0;while (tmp % 2 == 0) {tmp /= 2;max_base++;}root = 2;while (true) {if (root.pow(1 << max_base).v == 1) {if (root.pow(1 << (max_base - 1)).v != 1) {break;}}root++;}}void ensure_base(int nbase) {if (max_base == -1) init();if (nbase <= base) return;assert(nbase <= max_base);rev.resize(1 << nbase);for (int i = 0; i < (1 << nbase); ++i) {rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));}roots.resize(1 << nbase);while (base < nbase) {D z = root.pow(1 << (max_base - 1 - base));for (int i = 1 << (base - 1); i < (1 << base); ++i) {roots[i << 1] = roots[i];roots[(i << 1) + 1] = roots[i] * z;}++base;}}void ntt(V<D>& a, bool inv = false) {int n = a.size();// assert((n & (n - 1)) == 0);int zeros = __builtin_ctz(n);ensure_base(zeros);int shift = base - zeros;for (int i = 0; i < n; i++) {if (i < (rev[i] >> shift)) {swap(a[i], a[rev[i] >> shift]);}}for (int k = 1; k < n; k <<= 1) {for (int i = 0; i < n; i += 2 * k) {for (int j = 0; j < k; j++) {D x = a[i + j];D y = a[i + j + k] * roots[j + k];a[i + j] = x + y;a[i + j + k] = x - y;}}}int v = D(n).inv().v;if (inv) {reverse(a.begin() + 1, a.end());for (int i = 0; i < n; i++) {a[i] *= v;}}}V<D> mul(V<D> a, V<D> b) {int s = a.size() + b.size() - 1;int nbase = 1;while ((1 << nbase) < s) nbase++;int sz = 1 << nbase;a.resize(sz);b.resize(sz);ntt(a);ntt(b);for (int i = 0; i < sz; i++) {a[i] *= b[i];}ntt(a, true);a.resize(s);return a;}};int main() {NumberTheoreticTransform<Mint> ntt;ntt.init();int P;cin >> P;V<int> A(P), B(P);for (int i = 1; i < P; ++i) cin >> A[i];for (int i = 1; i < P; ++i) cin >> B[i];int g = 1;{while (true) {ll t = 1;int ord = 0;while (true) {t = t * g % P;++ord;if (t == 1) {break;}}if (ord == P - 1) {break;}++g;}}V<Mint> va(P - 1), vb(P - 1);int x = 1;rep(i, P - 1) {va[i] = A[x];vb[i] = B[x];x = (ll)x * g % P;}auto vec = ntt.mul(va, vb);rep(i, vec.size()) if (i >= P - 1) { vec[i - (P - 1)] += vec[i]; }V<Mint> ans(P);x = 1;rep(i, P - 1) {ans[x] = vec[i];x = (ll)x * g % P;}rep(i, P) if (i) { cout << ans[i] << (i == P - 1 ? '\n' : ' '); }return 0;}