結果
問題 | No.931 Multiplicative Convolution |
ユーザー | satashun |
提出日時 | 2020-04-20 21:18:40 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 150 ms / 2,000 ms |
コード長 | 6,743 bytes |
コンパイル時間 | 2,392 ms |
コンパイル使用メモリ | 211,196 KB |
実行使用メモリ | 8,944 KB |
最終ジャッジ日時 | 2024-10-06 09:13:52 |
合計ジャッジ時間 | 5,419 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 3 ms
5,248 KB |
testcase_07 | AC | 16 ms
5,248 KB |
testcase_08 | AC | 130 ms
8,944 KB |
testcase_09 | AC | 74 ms
8,880 KB |
testcase_10 | AC | 123 ms
8,848 KB |
testcase_11 | AC | 75 ms
8,932 KB |
testcase_12 | AC | 79 ms
6,364 KB |
testcase_13 | AC | 150 ms
8,880 KB |
testcase_14 | AC | 136 ms
8,944 KB |
testcase_15 | AC | 130 ms
8,944 KB |
testcase_16 | AC | 126 ms
8,880 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; using pii = pair<int, int>; template <class T> using V = vector<T>; template <class T> using VV = V<V<T>>; #define pb push_back #define eb emplace_back #define mp make_pair #define fi first #define se second #define rep(i, n) rep2(i, 0, n) #define rep2(i, m, n) for (int i = m; i < (n); i++) #define ALL(c) (c).begin(), (c).end() constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); } template <class T, class U> void chmin(T& t, const U& u) { if (t > u) t = u; } template <class T, class U> void chmax(T& t, const U& u) { if (t < u) t = u; } template <class T, class U> ostream& operator<<(ostream& os, const pair<T, U>& p) { os << "(" << p.first << "," << p.second << ")"; return os; } template <class T> ostream& operator<<(ostream& os, const vector<T>& v) { os << "{"; rep(i, v.size()) { if (i) os << ","; os << v[i]; } os << "}"; return os; } #ifdef LOCAL void debug_out() { cerr << endl; } template <typename Head, typename... Tail> void debug_out(Head H, Tail... T) { cerr << " " << H; debug_out(T...); } #define debug(...) \ cerr << __LINE__ << " [" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__) #define dump(x) cerr << __LINE__ << " " << #x << " = " << (x) << endl #else #define debug(...) (void(0)) #define dump(x) (void(0)) #endif template <unsigned int MOD> struct ModInt { using uint = unsigned int; using ull = unsigned long long; using M = ModInt; uint v; ModInt(ll _v = 0) { set_norm(_v % MOD + MOD); } M& set_norm(uint _v) { //[0, MOD * 2)->[0, MOD) v = (_v < MOD) ? _v : _v - MOD; return *this; } explicit operator bool() const { return v != 0; } M operator+(const M& a) const { return M().set_norm(v + a.v); } M operator-(const M& a) const { return M().set_norm(v + MOD - a.v); } M operator*(const M& a) const { return M().set_norm(ull(v) * a.v % MOD); } M operator/(const M& a) const { return *this * a.inv(); } M& operator+=(const M& a) { return *this = *this + a; } M& operator-=(const M& a) { return *this = *this - a; } M& operator*=(const M& a) { return *this = *this * a; } M& operator/=(const M& a) { return *this = *this / a; } M operator-() const { return M() - *this; } M& operator++(int) { return *this = *this + 1; } M& operator--(int) { return *this = *this - 1; } M pow(ll n) const { if (n < 0) return inv().pow(-n); M x = *this, res = 1; while (n) { if (n & 1) res *= x; x *= x; n >>= 1; } return res; } M inv() const { ll a = v, b = MOD, p = 1, q = 0, t; while (b != 0) { t = a / b; swap(a -= t * b, b); swap(p -= t * q, q); } return M(p); } bool operator==(const M& a) const { return v == a.v; } bool operator!=(const M& a) const { return v != a.v; } friend ostream& operator<<(ostream& os, const M& a) { return os << a.v; } static int get_mod() { return MOD; } }; using Mint = ModInt<998244353>; // depend on ModInt, must use NTT friendly mod template <class D> struct NumberTheoreticTransform { D root; V<D> roots = {0, 1}; V<int> rev = {0, 1}; int base = 1, max_base = -1; void init() { int mod = D::get_mod(); int tmp = mod - 1; max_base = 0; while (tmp % 2 == 0) { tmp /= 2; max_base++; } root = 2; while (true) { if (root.pow(1 << max_base).v == 1) { if (root.pow(1 << (max_base - 1)).v != 1) { break; } } root++; } } void ensure_base(int nbase) { if (max_base == -1) init(); if (nbase <= base) return; assert(nbase <= max_base); rev.resize(1 << nbase); for (int i = 0; i < (1 << nbase); ++i) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } roots.resize(1 << nbase); while (base < nbase) { D z = root.pow(1 << (max_base - 1 - base)); for (int i = 1 << (base - 1); i < (1 << base); ++i) { roots[i << 1] = roots[i]; roots[(i << 1) + 1] = roots[i] * z; } ++base; } } void ntt(V<D>& a, bool inv = false) { int n = a.size(); // assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for (int i = 0; i < n; i++) { if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for (int k = 1; k < n; k <<= 1) { for (int i = 0; i < n; i += 2 * k) { for (int j = 0; j < k; j++) { D x = a[i + j]; D y = a[i + j + k] * roots[j + k]; a[i + j] = x + y; a[i + j + k] = x - y; } } } int v = D(n).inv().v; if (inv) { reverse(a.begin() + 1, a.end()); for (int i = 0; i < n; i++) { a[i] *= v; } } } V<D> mul(V<D> a, V<D> b) { int s = a.size() + b.size() - 1; int nbase = 1; while ((1 << nbase) < s) nbase++; int sz = 1 << nbase; a.resize(sz); b.resize(sz); ntt(a); ntt(b); for (int i = 0; i < sz; i++) { a[i] *= b[i]; } ntt(a, true); a.resize(s); return a; } }; int main() { NumberTheoreticTransform<Mint> ntt; ntt.init(); int P; cin >> P; V<int> A(P), B(P); for (int i = 1; i < P; ++i) cin >> A[i]; for (int i = 1; i < P; ++i) cin >> B[i]; int g = 1; { while (true) { ll t = 1; int ord = 0; while (true) { t = t * g % P; ++ord; if (t == 1) { break; } } if (ord == P - 1) { break; } ++g; } } V<Mint> va(P - 1), vb(P - 1); int x = 1; rep(i, P - 1) { va[i] = A[x]; vb[i] = B[x]; x = (ll)x * g % P; } auto vec = ntt.mul(va, vb); rep(i, vec.size()) if (i >= P - 1) { vec[i - (P - 1)] += vec[i]; } V<Mint> ans(P); x = 1; rep(i, P - 1) { ans[x] = vec[i]; x = (ll)x * g % P; } rep(i, P) if (i) { cout << ans[i] << (i == P - 1 ? '\n' : ' '); } return 0; }