結果
問題 | No.1080 Strange Squared Score Sum |
ユーザー |
![]() |
提出日時 | 2020-04-30 23:15:16 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 8,070 bytes |
コンパイル時間 | 3,696 ms |
コンパイル使用メモリ | 213,876 KB |
実行使用メモリ | 83,884 KB |
最終ジャッジ日時 | 2025-01-02 04:51:48 |
合計ジャッジ時間 | 28,109 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 9 WA * 11 |
ソースコード
#define _USE_MATH_DEFINES#include <bits/stdc++.h>using namespace std;//template#define rep(i,a,b) for(int i=(a);i<(b);i++)#define ALL(v) (v).begin(),(v).end()typedef long long int ll;const int inf = 0x3fffffff; const ll INF = 0x1fffffffffffffff; const double eps=1e-12;template<class T>inline bool chmax(T& a,T b){if(a<b){a=b;return 1;}return 0;}template<class T>inline bool chmin(T& a,T b){if(a>b){a=b;return 1;}return 0;}template<typename T=int>inline T get(){char c=getchar(); bool neg=(c=='-');T res=neg?0:c-'0'; while(isdigit(c=getchar()))res=res*10+(c-'0');return neg?-res:res;}template<typename T=int>inline void put(T x,char c='\n'){if(x<0)putchar('-'),x*=-1; int d[20],i=0;do{d[i++]=x%10;}while(x/=10); while(i--)putchar('0'+d[i]);putchar(c);}//endtemplate<unsigned mod=1000000009>struct fp {unsigned v;static unsigned get_mod(){return mod;}unsigned inv() const{int tmp,a=v,b=mod,x=1,y=0;while(b)tmp=a/b,a-=tmp*b,swap(a,b),x-=tmp*y,swap(x,y);if(x<0)x+=mod; return x;}fp():v(0){}fp(ll x):v(x>=0?x%mod:mod+(x%mod)){}fp pow(ll t){fp res=1,b=*this; while(t){if(t&1)res*=b;b*=b;t>>=1;}return res;}fp& operator+=(const fp& x){if((v+=x.v)>=mod)v-=mod;return *this;}fp& operator-=(const fp& x){if((v+=mod-x.v)>=mod)v-=mod; return *this;}fp& operator*=(const fp& x){v=ll(v)*x.v%mod; return *this;}fp& operator/=(const fp& x){v=ll(v)*x.inv()%mod; return *this;}fp operator+(const fp& x)const{return fp(*this)+=x;}fp operator-(const fp& x)const{return fp(*this)-=x;}fp operator*(const fp& x)const{return fp(*this)*=x;}fp operator/(const fp& x)const{return fp(*this)/=x;}bool operator==(const fp& x)const{return v==x.v;}bool operator!=(const fp& x)const{return v!=x.v;}}; using Fp=fp<>;template<typename T>struct factorial {vector<T> Fact,Finv,Inv;factorial(int maxx){Fact.resize(maxx); Finv.resize(maxx); Inv.resize(maxx);Fact[0]=Fact[1]=Finv[0]=Finv[1]=Inv[1]=1; unsigned mod=Fp::get_mod();rep(i,2,maxx){Fact[i]=Fact[i-1]*i;Inv[i]=Inv[mod%i]*(mod-mod/i);Finv[i]=Finv[i-1]*Inv[i];}}T fact(int n,bool inv=0){if(inv)return Finv[n];else return Fact[n];}T inv(int n){return Inv[n];}T nPr(int n,int r){if(n<0||n<r||r<0)return Fp(0);else return Fact[n]*Finv[n-r];}T nCr(int n,int r){if(n<0||n<r||r<0)return Fp(0);else return Fact[n]*Finv[r]*Finv[n-r];}};template<typename T,unsigned p>struct NTT{vector<T> rt,irt;NTT(int lg=21){const unsigned m=T(-1).v; T prt=p;rt.resize(1<<lg,1); irt.resize(1<<lg,1);for(int w=0;w<lg;w++){int mask=1<<w; T g=prt.pow(m>>w),ig=g.inv();for(int i=0;i<mask-1;i++){rt[mask+i+1]=g*rt[mask+i];irt[mask+i+1]=ig*irt[mask+i];}}}void ntt(vector<T>& f,bool inv=0){int n=f.size();if(inv){for(int i=1;i<n;i<<=1)for(int j=0;j<n;j+=i*2)for(int k=0;k<i;k++){f[i+j+k]*=irt[i*2+k]; const T tmp=f[j+k]-f[i+j+k];f[j+k]+=f[i+j+k]; f[i+j+k]=tmp;} T mul=T(n).inv(); rep(i,0,n)f[i]*=mul;}else{for(int i=n>>1;i;i>>=1)for(int j=0;j<n;j+=i*2)for(int k=0;k<i;k++){const T tmp=f[j+k]-f[i+j+k];f[j+k]+=f[i+j+k]; f[i+j+k]=tmp*rt[i*2+k];}}}vector<T> conv(vector<T> a,vector<T> b,bool same){int n=a.size()+b.size()-1,m=1; while(m<n)m<<=1;a.resize(m); ntt(a);if(same)rep(i,0,m)a[i]*=a[i];else{b.resize(m); ntt(b); rep(i,0,m)a[i]*=b[i];}ntt(a,1); a.resize(n); return a;}};using M1=fp<1045430273>; using M2=fp<1051721729>; using M3=fp<1053818881>;NTT<fp<1045430273>,3> N1; NTT<fp<1051721729>,6> N2; NTT<fp<1053818881>,7> N3;inline vector<Fp> multiply(vector<Fp> a,vector<Fp> b,bool same=0){int n=a.size()+b.size()-1; vector<Fp> res(n); vector<int> vals[3];vector<int> aa(a.size()),bb(b.size());rep(i,0,a.size())aa[i]=a[i].v; rep(i,0,b.size())bb[i]=b[i].v;vector<M1> a1(ALL(aa)),b1(ALL(bb)),c1=N1.conv(a1,b1,same);vector<M2> a2(ALL(aa)),b2(ALL(bb)),c2=N2.conv(a2,b2,same);vector<M3> a3(ALL(aa)),b3(ALL(bb)),c3=N3.conv(a3,b3,same);for(M1 x:c1)vals[0].push_back(x.v);for(M2 x:c2)vals[1].push_back(x.v);for(M3 x:c3)vals[2].push_back(x.v);M2 r_12=175287122;M3 r_13=395182206,r_23=526909943,r_1323=461108887;Fp w1=1045430273; Fp w2=372986501;rep(i,0,n){ll a=vals[0][i];ll b=(vals[1][i]+M2::get_mod()-a)*r_12.v%M2::get_mod();ll c=((vals[2][i]+M3::get_mod()-a)*r_1323.v+(M3::get_mod()-b)*r_23.v)%M3::get_mod();res[i]=(a+b*w1.v+c*w2.v);} return res;}factorial<Fp> fact(1048576);template<typename T>struct Poly{vector<T> f;Poly(){}Poly(int _n):f(_n){}Poly(vector<T> _f){f=_f;}T& operator[](const int i){return f[i];}T eval(T x){T res,w=1; for(T v:f)res+=w*v,w*=x; return res;}int size()const{return f.size();}Poly resize(int n){Poly res=*this; res.f.resize(n); return res;}void shrink(){while(!f.empty() and f.back()==0)f.pop_back();}Poly inv()const{assert(f[0]!=0); int n=f.size(); Poly res(1); res[0]=f[0].inv();for(int k=1;k<n;k<<=1){Poly g=res,h=*this; h=h.resize(k*2); res=res.resize(k*2);g=(g.square()*h).resize(k*2); rep(i,k,min(k*2,n))res[i]-=g[i];} return res;}Poly square(){return Poly(multiply(f,f,1));}Poly operator+(const Poly& g)const{return Poly(*this)+=g;}Poly operator-(const Poly& g)const{return Poly(*this)-=g;}Poly operator*(const Poly& g)const{return Poly(*this)*=g;}Poly operator/(const Poly& g)const{return Poly(*this)/=g;}Poly operator%(const Poly& g)const{return Poly(*this)%=g;}Poly& operator+=(Poly g){if(g.size()>f.size())f.resize(g.size());rep(i,0,g.size())f[i]+=g[i]; shrink(); return *this;}Poly& operator-=(Poly g){if(g.size()>f.size())f.resize(g.size());rep(i,0,g.size())f[i]-=g[i]; shrink(); return *this;}Poly& operator*=(Poly g){f=multiply(f,g.f); shrink(); return *this;}Poly& operator/=(Poly g){if(g.size()>f.size())return *this=Poly();reverse(ALL(f)); reverse(ALL(g.f));int n=f.size()-g.size()+1;f.resize(n); g.f.resize(n);*this*=g.inv(); f.resize(n);reverse(ALL(f)); shrink(); return *this;}Poly& operator%=(Poly g){*this-=*this/g*g; shrink(); return *this;}Poly diff(){Poly res(f.size()-1); rep(i,0,res.size())res[i]=f[i+1]*(i+1); return res;}Poly inte(){Poly res(f.size()+1); for(int i=res.size()-1;i;i--)res[i]=f[i-1]*fact.inv(i); return res;}Poly log(){assert(f[0]==1); int n=f.size(); Poly res=diff()*inv();res=res.inte(); return res.resize(n);}Poly exp(){assert(f[0]==0); int n=f.size();Poly res(1),g(1); res[0]=g[0]=1;for(int k=1;k<n;k<<=1){g=(g+g-g.square()*res).resize(k);Poly q=resize(k).diff();Poly w=(q+g*(res.diff()-res*q)).resize(2*k-1);res=(res+res*(resize(k*2)-w.inte())).resize(2*k);} return res.resize(n);}Poly shift(int c){int n=f.size(); Poly res=*this,mul(n); mul[1]=c; mul=mul.exp();rep(i,0,n)res[i]*=fact.fact(i); reverse(ALL(res.f));res*=mul; res=res.resize(n); reverse(ALL(res.f));rep(i,0,n)res[i]*=fact.fact(i,1); return res;}};constexpr int I=569522298;Poly<Fp> _sin(Poly<Fp> f){//{exp(if)-exp(-if)}/2iPoly<Fp> f1=f,f2=f;for(auto& x:f1.f)x*=I;for(auto& x:f2.f)x*=-I;Poly<Fp> res=f1.exp()-f2.exp();Fp t=Fp(I*2).inv(); for(auto& x:res.f)x*=t; return res;}Poly<Fp> _cos(Poly<Fp> f){//{exp(if)+exp(-if)}/2Poly<Fp> f1=f,f2=f;for(auto& x:f1.f)x*=I;for(auto& x:f2.f)x*=-I;Poly<Fp> res=f1.exp()+f2.exp();Fp t=Fp(2).inv(); for(auto& x:res.f)x*=t; return res;}int main(){int n=get();Poly<Fp> f(n+1); rep(i,1,n+1)f[i]=(i+1)*(i+1);Poly<Fp> ret=_sin(f)+_cos(f);rep(i,1,n+1)put((ret[i]*fact.fact(n)).v);return 0;}