結果
問題 | No.1080 Strange Squared Score Sum |
ユーザー | tko919 |
提出日時 | 2020-04-30 23:15:16 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 8,070 bytes |
コンパイル時間 | 3,553 ms |
コンパイル使用メモリ | 217,956 KB |
実行使用メモリ | 83,880 KB |
最終ジャッジ日時 | 2024-06-10 14:08:55 |
合計ジャッジ時間 | 24,627 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 81 ms
64,640 KB |
testcase_01 | AC | 81 ms
64,640 KB |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | AC | 476 ms
69,380 KB |
testcase_05 | AC | 475 ms
69,816 KB |
testcase_06 | AC | 176 ms
65,924 KB |
testcase_07 | AC | 271 ms
67,084 KB |
testcase_08 | WA | - |
testcase_09 | AC | 898 ms
73,896 KB |
testcase_10 | AC | 175 ms
65,924 KB |
testcase_11 | WA | - |
testcase_12 | AC | 897 ms
74,020 KB |
testcase_13 | WA | - |
testcase_14 | AC | 905 ms
74,064 KB |
testcase_15 | AC | 82 ms
64,640 KB |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; //template #define rep(i,a,b) for(int i=(a);i<(b);i++) #define ALL(v) (v).begin(),(v).end() typedef long long int ll; const int inf = 0x3fffffff; const ll INF = 0x1fffffffffffffff; const double eps=1e-12; template<class T>inline bool chmax(T& a,T b){if(a<b){a=b;return 1;}return 0;} template<class T>inline bool chmin(T& a,T b){if(a>b){a=b;return 1;}return 0;} template<typename T=int>inline T get(){ char c=getchar(); bool neg=(c=='-'); T res=neg?0:c-'0'; while(isdigit(c=getchar()))res=res*10+(c-'0'); return neg?-res:res; } template<typename T=int>inline void put(T x,char c='\n'){ if(x<0)putchar('-'),x*=-1; int d[20],i=0; do{d[i++]=x%10;}while(x/=10); while(i--)putchar('0'+d[i]); putchar(c); } //end template<unsigned mod=1000000009>struct fp { unsigned v; static unsigned get_mod(){return mod;} unsigned inv() const{ int tmp,a=v,b=mod,x=1,y=0; while(b)tmp=a/b,a-=tmp*b,swap(a,b),x-=tmp*y,swap(x,y); if(x<0)x+=mod; return x; } fp():v(0){} fp(ll x):v(x>=0?x%mod:mod+(x%mod)){} fp pow(ll t){fp res=1,b=*this; while(t){if(t&1)res*=b;b*=b;t>>=1;}return res;} fp& operator+=(const fp& x){if((v+=x.v)>=mod)v-=mod;return *this;} fp& operator-=(const fp& x){if((v+=mod-x.v)>=mod)v-=mod; return *this;} fp& operator*=(const fp& x){v=ll(v)*x.v%mod; return *this;} fp& operator/=(const fp& x){v=ll(v)*x.inv()%mod; return *this;} fp operator+(const fp& x)const{return fp(*this)+=x;} fp operator-(const fp& x)const{return fp(*this)-=x;} fp operator*(const fp& x)const{return fp(*this)*=x;} fp operator/(const fp& x)const{return fp(*this)/=x;} bool operator==(const fp& x)const{return v==x.v;} bool operator!=(const fp& x)const{return v!=x.v;} }; using Fp=fp<>; template<typename T>struct factorial { vector<T> Fact,Finv,Inv; factorial(int maxx){ Fact.resize(maxx); Finv.resize(maxx); Inv.resize(maxx); Fact[0]=Fact[1]=Finv[0]=Finv[1]=Inv[1]=1; unsigned mod=Fp::get_mod(); rep(i,2,maxx){ Fact[i]=Fact[i-1]*i; Inv[i]=Inv[mod%i]*(mod-mod/i); Finv[i]=Finv[i-1]*Inv[i]; } } T fact(int n,bool inv=0){if(inv)return Finv[n];else return Fact[n];} T inv(int n){return Inv[n];} T nPr(int n,int r){if(n<0||n<r||r<0)return Fp(0);else return Fact[n]*Finv[n-r];} T nCr(int n,int r){if(n<0||n<r||r<0)return Fp(0);else return Fact[n]*Finv[r]*Finv[n-r];} }; template<typename T,unsigned p>struct NTT{ vector<T> rt,irt; NTT(int lg=21){ const unsigned m=T(-1).v; T prt=p; rt.resize(1<<lg,1); irt.resize(1<<lg,1); for(int w=0;w<lg;w++){ int mask=1<<w; T g=prt.pow(m>>w),ig=g.inv(); for(int i=0;i<mask-1;i++){ rt[mask+i+1]=g*rt[mask+i]; irt[mask+i+1]=ig*irt[mask+i]; } } } void ntt(vector<T>& f,bool inv=0){ int n=f.size(); if(inv){ for(int i=1;i<n;i<<=1)for(int j=0;j<n;j+=i*2)for(int k=0;k<i;k++){ f[i+j+k]*=irt[i*2+k]; const T tmp=f[j+k]-f[i+j+k]; f[j+k]+=f[i+j+k]; f[i+j+k]=tmp; } T mul=T(n).inv(); rep(i,0,n)f[i]*=mul; }else{ for(int i=n>>1;i;i>>=1)for(int j=0;j<n;j+=i*2)for(int k=0;k<i;k++){ const T tmp=f[j+k]-f[i+j+k]; f[j+k]+=f[i+j+k]; f[i+j+k]=tmp*rt[i*2+k]; } } } vector<T> conv(vector<T> a,vector<T> b,bool same){ int n=a.size()+b.size()-1,m=1; while(m<n)m<<=1; a.resize(m); ntt(a); if(same)rep(i,0,m)a[i]*=a[i]; else{b.resize(m); ntt(b); rep(i,0,m)a[i]*=b[i];} ntt(a,1); a.resize(n); return a; } }; using M1=fp<1045430273>; using M2=fp<1051721729>; using M3=fp<1053818881>; NTT<fp<1045430273>,3> N1; NTT<fp<1051721729>,6> N2; NTT<fp<1053818881>,7> N3; inline vector<Fp> multiply(vector<Fp> a,vector<Fp> b,bool same=0){ int n=a.size()+b.size()-1; vector<Fp> res(n); vector<int> vals[3]; vector<int> aa(a.size()),bb(b.size()); rep(i,0,a.size())aa[i]=a[i].v; rep(i,0,b.size())bb[i]=b[i].v; vector<M1> a1(ALL(aa)),b1(ALL(bb)),c1=N1.conv(a1,b1,same); vector<M2> a2(ALL(aa)),b2(ALL(bb)),c2=N2.conv(a2,b2,same); vector<M3> a3(ALL(aa)),b3(ALL(bb)),c3=N3.conv(a3,b3,same); for(M1 x:c1)vals[0].push_back(x.v); for(M2 x:c2)vals[1].push_back(x.v); for(M3 x:c3)vals[2].push_back(x.v); M2 r_12=175287122; M3 r_13=395182206,r_23=526909943,r_1323=461108887; Fp w1=1045430273; Fp w2=372986501; rep(i,0,n){ ll a=vals[0][i]; ll b=(vals[1][i]+M2::get_mod()-a)*r_12.v%M2::get_mod(); ll c=((vals[2][i]+M3::get_mod()-a)*r_1323.v+ (M3::get_mod()-b)*r_23.v)%M3::get_mod(); res[i]=(a+b*w1.v+c*w2.v); } return res; } factorial<Fp> fact(1048576); template<typename T>struct Poly{ vector<T> f; Poly(){} Poly(int _n):f(_n){} Poly(vector<T> _f){f=_f;} T& operator[](const int i){return f[i];} T eval(T x){T res,w=1; for(T v:f)res+=w*v,w*=x; return res;} int size()const{return f.size();} Poly resize(int n){Poly res=*this; res.f.resize(n); return res;} void shrink(){while(!f.empty() and f.back()==0)f.pop_back();} Poly inv()const{ assert(f[0]!=0); int n=f.size(); Poly res(1); res[0]=f[0].inv(); for(int k=1;k<n;k<<=1){ Poly g=res,h=*this; h=h.resize(k*2); res=res.resize(k*2); g=(g.square()*h).resize(k*2); rep(i,k,min(k*2,n))res[i]-=g[i]; } return res; } Poly square(){return Poly(multiply(f,f,1));} Poly operator+(const Poly& g)const{return Poly(*this)+=g;} Poly operator-(const Poly& g)const{return Poly(*this)-=g;} Poly operator*(const Poly& g)const{return Poly(*this)*=g;} Poly operator/(const Poly& g)const{return Poly(*this)/=g;} Poly operator%(const Poly& g)const{return Poly(*this)%=g;} Poly& operator+=(Poly g){ if(g.size()>f.size())f.resize(g.size()); rep(i,0,g.size())f[i]+=g[i]; shrink(); return *this; } Poly& operator-=(Poly g){ if(g.size()>f.size())f.resize(g.size()); rep(i,0,g.size())f[i]-=g[i]; shrink(); return *this; } Poly& operator*=(Poly g){f=multiply(f,g.f); shrink(); return *this;} Poly& operator/=(Poly g){ if(g.size()>f.size())return *this=Poly(); reverse(ALL(f)); reverse(ALL(g.f)); int n=f.size()-g.size()+1; f.resize(n); g.f.resize(n); *this*=g.inv(); f.resize(n); reverse(ALL(f)); shrink(); return *this; } Poly& operator%=(Poly g){*this-=*this/g*g; shrink(); return *this;} Poly diff(){Poly res(f.size()-1); rep(i,0,res.size())res[i]=f[i+1]*(i+1); return res;} Poly inte(){Poly res(f.size()+1); for(int i=res.size()-1;i;i--)res[i]=f[i-1]*fact.inv(i); return res;} Poly log(){ assert(f[0]==1); int n=f.size(); Poly res=diff()*inv(); res=res.inte(); return res.resize(n); } Poly exp(){ assert(f[0]==0); int n=f.size(); Poly res(1),g(1); res[0]=g[0]=1; for(int k=1;k<n;k<<=1){ g=(g+g-g.square()*res).resize(k); Poly q=resize(k).diff(); Poly w=(q+g*(res.diff()-res*q)).resize(2*k-1); res=(res+res*(resize(k*2)-w.inte())).resize(2*k); } return res.resize(n); } Poly shift(int c){ int n=f.size(); Poly res=*this,mul(n); mul[1]=c; mul=mul.exp(); rep(i,0,n)res[i]*=fact.fact(i); reverse(ALL(res.f)); res*=mul; res=res.resize(n); reverse(ALL(res.f)); rep(i,0,n)res[i]*=fact.fact(i,1); return res; } }; constexpr int I=569522298; Poly<Fp> _sin(Poly<Fp> f){ //{exp(if)-exp(-if)}/2i Poly<Fp> f1=f,f2=f; for(auto& x:f1.f)x*=I; for(auto& x:f2.f)x*=-I; Poly<Fp> res=f1.exp()-f2.exp(); Fp t=Fp(I*2).inv(); for(auto& x:res.f)x*=t; return res; } Poly<Fp> _cos(Poly<Fp> f){ //{exp(if)+exp(-if)}/2 Poly<Fp> f1=f,f2=f; for(auto& x:f1.f)x*=I; for(auto& x:f2.f)x*=-I; Poly<Fp> res=f1.exp()+f2.exp(); Fp t=Fp(2).inv(); for(auto& x:res.f)x*=t; return res; } int main(){ int n=get(); Poly<Fp> f(n+1); rep(i,1,n+1)f[i]=(i+1)*(i+1); Poly<Fp> ret=_sin(f)+_cos(f); rep(i,1,n+1)put((ret[i]*fact.fact(n)).v); return 0; }