結果
| 問題 |
No.301 サイコロで確率問題 (1)
|
| コンテスト | |
| ユーザー |
FF256grhy
|
| 提出日時 | 2020-05-01 01:19:00 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,146 bytes |
| コンパイル時間 | 2,164 ms |
| コンパイル使用メモリ | 177,276 KB |
| 実行使用メモリ | 13,640 KB |
| 最終ジャッジ日時 | 2024-12-21 08:57:37 |
| 合計ジャッジ時間 | 7,663 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | TLE * 2 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using LL = long long int;
#define incID(i, l, r) for(int i = (l) ; i < (r); ++i)
#define decID(i, l, r) for(int i = (r) - 1; i >= (l); --i)
#define incII(i, l, r) for(int i = (l) ; i <= (r); ++i)
#define decII(i, l, r) for(int i = (r) ; i >= (l); --i)
#define inc(i, n) incID(i, 0, n)
#define dec(i, n) decID(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec1(i, n) decII(i, 1, n)
#define inID(v, l, r) ((l) <= (v) && (v) < (r))
#define inII(v, l, r) ((l) <= (v) && (v) <= (r))
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define FI first
#define SE second
#define FR front()
#define BA back()
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
auto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); };
auto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); };
auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };
auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };
#define SI(v) static_cast<int>(v.size())
#define RF(e, v) for(auto & e: v)
#define until(e) while(! (e))
#define if_not(e) if(! (e))
#define ef else if
#define UR assert(false)
#define IN(T, ...) T __VA_ARGS__; IN_(__VA_ARGS__);
void IN_() { };
template<typename T, typename ... U> void IN_(T & a, U & ... b) { cin >> a; IN_(b ...); };
template<typename T> void OUT(T && a) { cout << a << endl; }
template<typename T, typename ... U> void OUT(T && a, U && ... b) { cout << a << " "; OUT(b ...); }
// ---- ----
template<typename T, int N> struct Matrix {
vector<vector<T>> v;
Matrix(T t) {
init();
inc(i, N) { v[i][i] = t; }
}
Matrix(vector<vector<T>> const & w = { }) { init(w); }
void init(vector<vector<T>> const & w = { }) {
v = vector<vector<T>>(N, vector<T>(N, 0));
assert(w.size() <= N);
inc(i, w.size()) { assert(w[i].size() <= N);
inc(j, w[i].size()) {
v[i][j] = w[i][j];
}
}
}
vector<T> const & operator[](int i) const { return v[i]; }
vector<T> & operator[](int i) { return v[i]; }
friend Matrix operator+(Matrix const & a, Matrix const & b) {
Matrix c;
inc(i, N) {
inc(j, N) {
c[i][j] = a[i][j] + b[i][j];
}
}
return c;
}
friend Matrix operator-(Matrix const & a, Matrix const & b) {
Matrix c;
inc(i, N) {
inc(j, N) {
c[i][j] = a[i][j] - b[i][j];
}
}
return c;
}
friend Matrix operator*(Matrix const & a, Matrix const & b) {
Matrix c;
inc(i, N) {
inc(j, N) {
inc(k, N) {
c[i][j] += a[i][k] * b[k][j];
}
}
}
return c;
}
friend Matrix operator^(Matrix const & a, LL b) {
Matrix c(1), e = a; assert(b >= 0);
while(b) { if(b & 1) { c *= e; } e *= e; b >>= 1; }
return c;
}
friend Matrix & operator+=(Matrix & a, Matrix const & b) { return (a = a + b); }
friend Matrix & operator-=(Matrix & a, Matrix const & b) { return (a = a - b); }
friend Matrix & operator*=(Matrix & a, Matrix const & b) { return (a = a * b); }
friend Matrix & operator^=(Matrix & a, LL b) { return (a = a ^ b); }
friend ostream & operator<<(ostream & os, Matrix const & m) {
inc(i, N) {
inc(j, N) {
os << m[i][j] << " ";
} os << endl;
} return os;
}
};
// ----
using LD = long double;
int main() {
LD p = 1 / 6.0L;
Matrix<LD, 12> v{ { { 1 } } }, a{ {
{ p, p, p, p, p, p, p, p, p, p, p, p },
{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, p, p, p, p, p, p },
{ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 },
} };
auto f = [&](LL n) -> LD {
auto w = v * (a ^ n);
LD P = w[0][0], E = w[0][6], PP = 1 - P, EE = 0;
incID(i, 1, 6) { EE += w[0][6 + i]; }
return (1 / P - 1) * EE / PP + E / P;
};
cout.precision(20);
IN(int, t);
inc(i, t) {
IN(LL, n);
OUT(f(n));
}
}
FF256grhy