結果

問題 No.650 行列木クエリ
ユーザー fine
提出日時 2020-05-12 03:03:13
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 277 ms / 2,000 ms
コード長 10,371 bytes
コンパイル時間 2,883 ms
コンパイル使用メモリ 199,344 KB
実行使用メモリ 60,904 KB
最終ジャッジ日時 2024-07-19 15:44:20
合計ジャッジ時間 4,891 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 10
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
constexpr char newl = '\n';
// https://noshi91.hatenablog.com/entry/2019/03/31/174006
template <std::uint_fast64_t Modulus>
struct ModInt {
using u64 = std::uint_fast64_t;
static constexpr u64 MOD = Modulus;
u64 val;
constexpr ModInt(const u64 x = 0) noexcept : val(x % MOD) {}
constexpr ModInt operator+() const noexcept { return ModInt(*this); }
constexpr ModInt operator-() const noexcept {
ModInt res(*this);
if (res.val != 0) res.val = MOD - res.val;
return res;
}
constexpr bool operator==(const ModInt& rhs) const noexcept { return val == rhs.val; }
constexpr bool operator!=(const ModInt& rhs) const noexcept { return val != rhs.val; }
// prefix increment/decrement
constexpr ModInt& operator++() noexcept { return *this += ModInt(1); }
constexpr ModInt& operator--() noexcept { return *this -= ModInt(1); }
// postfix increment/decrement
constexpr ModInt& operator++(int) noexcept {
ModInt tmp(*this);
++*this;
return tmp;
}
constexpr ModInt& operator--(int) noexcept {
ModInt tmp(*this);
--*this;
return tmp;
}
constexpr ModInt operator+(const ModInt& rhs) const noexcept {
return ModInt(*this) += rhs;
}
constexpr ModInt operator-(const ModInt& rhs) const noexcept {
return ModInt(*this) -= rhs;
}
constexpr ModInt operator*(const ModInt& rhs) const noexcept {
return ModInt(*this) *= rhs;
}
constexpr ModInt operator/(const ModInt& rhs) const noexcept {
return ModInt(*this) /= rhs;
}
constexpr ModInt& operator+=(const ModInt& rhs) noexcept {
val += rhs.val;
if (val >= MOD) val -= MOD;
return *this;
}
constexpr ModInt& operator-=(const ModInt& rhs) noexcept {
if (val < rhs.val) val += MOD;
val -= rhs.val;
return *this;
}
constexpr ModInt& operator*=(const ModInt& rhs) noexcept {
val = val * rhs.val % MOD;
return *this;
}
// prime Modulus only
constexpr ModInt& operator/=(const ModInt& rhs) noexcept {
return *this *= rhs.inv();
}
// prime Modulus only
constexpr ModInt inv() const noexcept {
return pow(*this, MOD - 2);
}
};
template<std::uint_fast64_t Modulus>
constexpr ModInt<Modulus> pow(ModInt<Modulus> x, std::uint_fast64_t n) {
ModInt<Modulus> res(1);
while (n) {
if (n & 1) res *= x;
x *= x;
n >>= 1;
}
return res;
}
template<std::uint_fast64_t Modulus>
istream& operator>>(istream& is, ModInt<Modulus>& x) {
std::uint_fast64_t val;
is >> val;
x = ModInt<Modulus>(val);
return is;
}
template<std::uint_fast64_t Modulus>
ostream& operator<<(ostream& os, const ModInt<Modulus>& x) {
return os << x.val;
}
using mint = ModInt<1000000007>;
// https://qiita.com/ageprocpp/items/8dfe768218da83314989
// http://codeforces.com/blog/entry/53170
// https://github.com/ningenMe/compro-library/blob/master/lib/graph/Tree.cpp#L220
// https://beet-aizu.github.io/library/library/tree/heavylightdecomposition.cpp.html
// https://ei1333.github.io/luzhiled/snippets/tree/heavy-light-decomposition.html
class HLD {
public:
using Graph = vector< vector<int> >;
using Segment = pair<int, int>;
private:
void dfs_size(int cur, int par) {
// if g[cur][0] == par, always sub_size[nex] < sub_size[par]
// and this will be broken...
if (!g[cur].empty() && g[cur][0] == par) swap(g[cur][0], g[cur].back());
for (int& nex : g[cur]) {
if (nex == par) continue;
parent[nex] = cur;
dfs_size(nex, cur);
sub_size[cur] += sub_size[nex];
if (sub_size[nex] > sub_size[g[cur][0]]) {
swap(nex, g[cur][0]);
}
}
}
// head: HLD
// in, out: Euler Tour
void dfs_hld(int cur, int par, int& times) {
in[cur] = times++;
for (int nex : g[cur]) {
if (nex == par) continue;
// if nex == g[cur][0]: heavy edge
// else: light edge
head[nex] = (nex == g[cur][0] ? head[cur] : nex);
dfs_hld(nex, cur, times);
}
out[cur] = times;
}
// convert node/edge path to segments
// segment: [l, r)
// is_edge_path ? edge path : node path
vector<Segment> to_segments(int u, int v, bool is_edge_path) {
vector<Segment> segments;
while (true) {
if (in[u] > in[v]) swap(u, v);
if (head[u] == head[v]) {
if (u != v || !is_edge_path) {
segments.emplace_back(in[u] + is_edge_path, in[v] + 1);
}
break;
}
segments.emplace_back(in[head[v]], in[v] + 1);
v = parent[head[v]];
}
return segments;
}
public:
Graph g;
vector<int> sub_size, parent, in, out, head;
HLD(const Graph& tree, const int root = 0)
: g(tree), sub_size(tree.size(), 1), parent(tree.size(), -1),
in(tree.size()), out(tree.size()), head(tree.size(), root) {
dfs_size(root, -1);
int times = 0;
dfs_hld(root, -1, times);
}
int lca(int u, int v) {
while (true) {
if (in[u] > in[v]) swap(u, v);
if (head[u] == head[v]) return u;
v = parent[head[v]];
}
}
inline vector<Segment> node_path_to_segments(int u, int v) {
return to_segments(u, v, false);
}
// you have to convert edge cost to node cost
// see: https://www.hamayanhamayan.com/entry/2017/04/10/172636
inline vector<Segment> edge_path_to_segments(int u, int v) {
return to_segments(u, v, true);
}
Segment subtree_to_segment(int v) {
return {in[v], out[v]};
}
};
using vec = vector<mint>;
using mat = vector<vec>;
mat mul(const mat& A, const mat& B) {
mat C(A.size(), vec(B[0].size(), 0));
for (int i = 0; i < A.size(); i++) {
for (int k = 0; k < B.size(); k++) {
for (int j = 0; j < B[0].size(); j++) {
C[i][j] += A[i][k] * B[k][j];
}
}
}
return C;
}
mat pow(mat A, ll n) {
mat B(A.size(), vec(A.size(), 0));
for (int i = 0; i < A.size(); i++) {
B[i][i] = 1;
}
while (n > 0) {
if (n & 1) B = mul(B, A);
A = mul(A, A);
n >>= 1;
}
return B;
}
template <class Monoid>
struct SegmentTree {
using T = typename Monoid::T;
int n;
vector<T> data;
SegmentTree() {}
SegmentTree(int size, T initial_value = Monoid::unit()) {
n = 1;
while (n < size) n <<= 1;
data.assign(2 * n - 1, initial_value);
if (initial_value != Monoid::unit()) {
for (int i = n - 2; i >= 0; i--) data[i] = Monoid::merge(data[i * 2 + 1], data[i * 2 + 2]);
}
}
SegmentTree(const vector<T>& v) {
int size = v.size();
n = 1;
while (n < size) n <<= 1;
data.assign(2 * n - 1, Monoid::unit());
for (int i = 0; i < size; i++) data[i + n - 1] = v[i];
for (int i = n - 2; i >= 0; i--) data[i] = Monoid::merge(data[i * 2 + 1], data[i * 2 + 2]);
}
T getLeaf(int k) {
return data[k + n - 1];
}
void update(int k, T x) {
k += n - 1; //
Monoid::update(data[k], x);
while (k > 0) {
k = (k - 1) / 2;
data[k] = Monoid::merge(data[k * 2 + 1], data[k * 2 + 2]);
}
}
//[a, b)
//k:, [l, r):
T query(int a, int b, int k, int l, int r) {
//[a, b)[l, r)
if (r <= a || b <= l) return Monoid::unit();
//[a, b)[l, r)
if (a <= l && r <= b) return data[k];
else {
//
T vl = query(a, b, k * 2 + 1, l, (l + r) / 2);
T vr = query(a, b, k * 2 + 2, (l + r) / 2, r);
return Monoid::merge(vl, vr);
}
}
//
T query(int a, int b) {
return query(a, b, 0, 0, n);
}
//: 使
//[a, b)
T query_fast(int a, int b) {
T vl = Monoid::unit(), vr = Monoid::unit();
for (int l = a + n, r = b + n; l != r; l >>= 1, r >>= 1) {
if (l & 1) vl = Monoid::merge(vl, data[l++ - 1]);
if (r & 1) vr = Monoid::merge(data[--r - 1], vr);
}
return Monoid::merge(vl, vr);
}
};
template <class U = mat>
struct RangeMul {
using T = U;
static T merge(T x, T y) { return mul(x, y); }
static void update(T& target, T x) { target = x; }
static constexpr T unit() { return T({{1, 0}, {0, 1}}); }
};
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
int n;
cin >> n;
HLD::Graph g(n);
vector<int> a(n - 1), b(n - 1);
for (int i = 0; i < n - 1; i++) {
cin >> a[i] >> b[i];
g[a[i]].push_back(b[i]);
g[b[i]].push_back(a[i]);
}
HLD hld(g);
SegmentTree< RangeMul<> > st(n);
int q;
cin >> q;
for (int i = 0; i < q; i++) {
char command;
cin >> command;
if (command == 'x') {
int j;
cin >> j;
mat x(2, vec(2));
for (int k = 0; k < 2; k++) {
for (int l = 0; l < 2; l++) {
cin >> x[k][l];
}
}
for (auto& seg : hld.edge_path_to_segments(a[j], b[j])) {
st.update(seg.first, x);
}
} else {
int j, k;
cin >> j >> k;
mat ans = RangeMul<>::unit();
for (auto& seg : hld.edge_path_to_segments(j, k)) {
ans = mul(st.query_fast(seg.first, seg.second), ans);
}
for (int l = 0; l < 2; l++) {
for (int m = 0; m < 2; m++) {
cout << ans[l][m] << " \n"[l == 1 && m == 1];
}
}
}
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0