結果
問題 | No.650 行列木クエリ |
ユーザー |
|
提出日時 | 2020-05-12 03:03:13 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 277 ms / 2,000 ms |
コード長 | 10,371 bytes |
コンパイル時間 | 2,883 ms |
コンパイル使用メモリ | 199,344 KB |
実行使用メモリ | 60,904 KB |
最終ジャッジ日時 | 2024-07-19 15:44:20 |
合計ジャッジ時間 | 4,891 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 10 |
ソースコード
#include <bits/stdc++.h>using namespace std;using ll = long long;constexpr char newl = '\n';// https://noshi91.hatenablog.com/entry/2019/03/31/174006template <std::uint_fast64_t Modulus>struct ModInt {using u64 = std::uint_fast64_t;static constexpr u64 MOD = Modulus;u64 val;constexpr ModInt(const u64 x = 0) noexcept : val(x % MOD) {}constexpr ModInt operator+() const noexcept { return ModInt(*this); }constexpr ModInt operator-() const noexcept {ModInt res(*this);if (res.val != 0) res.val = MOD - res.val;return res;}constexpr bool operator==(const ModInt& rhs) const noexcept { return val == rhs.val; }constexpr bool operator!=(const ModInt& rhs) const noexcept { return val != rhs.val; }// prefix increment/decrementconstexpr ModInt& operator++() noexcept { return *this += ModInt(1); }constexpr ModInt& operator--() noexcept { return *this -= ModInt(1); }// postfix increment/decrementconstexpr ModInt& operator++(int) noexcept {ModInt tmp(*this);++*this;return tmp;}constexpr ModInt& operator--(int) noexcept {ModInt tmp(*this);--*this;return tmp;}constexpr ModInt operator+(const ModInt& rhs) const noexcept {return ModInt(*this) += rhs;}constexpr ModInt operator-(const ModInt& rhs) const noexcept {return ModInt(*this) -= rhs;}constexpr ModInt operator*(const ModInt& rhs) const noexcept {return ModInt(*this) *= rhs;}constexpr ModInt operator/(const ModInt& rhs) const noexcept {return ModInt(*this) /= rhs;}constexpr ModInt& operator+=(const ModInt& rhs) noexcept {val += rhs.val;if (val >= MOD) val -= MOD;return *this;}constexpr ModInt& operator-=(const ModInt& rhs) noexcept {if (val < rhs.val) val += MOD;val -= rhs.val;return *this;}constexpr ModInt& operator*=(const ModInt& rhs) noexcept {val = val * rhs.val % MOD;return *this;}// prime Modulus onlyconstexpr ModInt& operator/=(const ModInt& rhs) noexcept {return *this *= rhs.inv();}// prime Modulus onlyconstexpr ModInt inv() const noexcept {return pow(*this, MOD - 2);}};template<std::uint_fast64_t Modulus>constexpr ModInt<Modulus> pow(ModInt<Modulus> x, std::uint_fast64_t n) {ModInt<Modulus> res(1);while (n) {if (n & 1) res *= x;x *= x;n >>= 1;}return res;}template<std::uint_fast64_t Modulus>istream& operator>>(istream& is, ModInt<Modulus>& x) {std::uint_fast64_t val;is >> val;x = ModInt<Modulus>(val);return is;}template<std::uint_fast64_t Modulus>ostream& operator<<(ostream& os, const ModInt<Modulus>& x) {return os << x.val;}using mint = ModInt<1000000007>;// https://qiita.com/ageprocpp/items/8dfe768218da83314989// http://codeforces.com/blog/entry/53170// https://github.com/ningenMe/compro-library/blob/master/lib/graph/Tree.cpp#L220// https://beet-aizu.github.io/library/library/tree/heavylightdecomposition.cpp.html// https://ei1333.github.io/luzhiled/snippets/tree/heavy-light-decomposition.htmlclass HLD {public:using Graph = vector< vector<int> >;using Segment = pair<int, int>;private:void dfs_size(int cur, int par) {// if g[cur][0] == par, always sub_size[nex] < sub_size[par]// and this will be broken...if (!g[cur].empty() && g[cur][0] == par) swap(g[cur][0], g[cur].back());for (int& nex : g[cur]) {if (nex == par) continue;parent[nex] = cur;dfs_size(nex, cur);sub_size[cur] += sub_size[nex];if (sub_size[nex] > sub_size[g[cur][0]]) {swap(nex, g[cur][0]);}}}// head: HLD// in, out: Euler Tourvoid dfs_hld(int cur, int par, int& times) {in[cur] = times++;for (int nex : g[cur]) {if (nex == par) continue;// if nex == g[cur][0]: heavy edge// else: light edgehead[nex] = (nex == g[cur][0] ? head[cur] : nex);dfs_hld(nex, cur, times);}out[cur] = times;}// convert node/edge path to segments// segment: [l, r)// is_edge_path ? edge path : node pathvector<Segment> to_segments(int u, int v, bool is_edge_path) {vector<Segment> segments;while (true) {if (in[u] > in[v]) swap(u, v);if (head[u] == head[v]) {if (u != v || !is_edge_path) {segments.emplace_back(in[u] + is_edge_path, in[v] + 1);}break;}segments.emplace_back(in[head[v]], in[v] + 1);v = parent[head[v]];}return segments;}public:Graph g;vector<int> sub_size, parent, in, out, head;HLD(const Graph& tree, const int root = 0): g(tree), sub_size(tree.size(), 1), parent(tree.size(), -1),in(tree.size()), out(tree.size()), head(tree.size(), root) {dfs_size(root, -1);int times = 0;dfs_hld(root, -1, times);}int lca(int u, int v) {while (true) {if (in[u] > in[v]) swap(u, v);if (head[u] == head[v]) return u;v = parent[head[v]];}}inline vector<Segment> node_path_to_segments(int u, int v) {return to_segments(u, v, false);}// you have to convert edge cost to node cost// see: https://www.hamayanhamayan.com/entry/2017/04/10/172636inline vector<Segment> edge_path_to_segments(int u, int v) {return to_segments(u, v, true);}Segment subtree_to_segment(int v) {return {in[v], out[v]};}};using vec = vector<mint>;using mat = vector<vec>;mat mul(const mat& A, const mat& B) {mat C(A.size(), vec(B[0].size(), 0));for (int i = 0; i < A.size(); i++) {for (int k = 0; k < B.size(); k++) {for (int j = 0; j < B[0].size(); j++) {C[i][j] += A[i][k] * B[k][j];}}}return C;}mat pow(mat A, ll n) {mat B(A.size(), vec(A.size(), 0));for (int i = 0; i < A.size(); i++) {B[i][i] = 1;}while (n > 0) {if (n & 1) B = mul(B, A);A = mul(A, A);n >>= 1;}return B;}template <class Monoid>struct SegmentTree {using T = typename Monoid::T;int n;vector<T> data;SegmentTree() {}SegmentTree(int size, T initial_value = Monoid::unit()) {n = 1;while (n < size) n <<= 1;data.assign(2 * n - 1, initial_value);if (initial_value != Monoid::unit()) {for (int i = n - 2; i >= 0; i--) data[i] = Monoid::merge(data[i * 2 + 1], data[i * 2 + 2]);}}SegmentTree(const vector<T>& v) {int size = v.size();n = 1;while (n < size) n <<= 1;data.assign(2 * n - 1, Monoid::unit());for (int i = 0; i < size; i++) data[i + n - 1] = v[i];for (int i = n - 2; i >= 0; i--) data[i] = Monoid::merge(data[i * 2 + 1], data[i * 2 + 2]);}T getLeaf(int k) {return data[k + n - 1];}void update(int k, T x) {k += n - 1; //葉の節点Monoid::update(data[k], x);while (k > 0) {k = (k - 1) / 2;data[k] = Monoid::merge(data[k * 2 + 1], data[k * 2 + 2]);}}//区間[a, b)に対するクエリに答える//k:節点番号, [l, r):節点に対応する区間T query(int a, int b, int k, int l, int r) {//[a, b)と[l, r)が交差しない場合if (r <= a || b <= l) return Monoid::unit();//[a, b)が[l, r)を含む場合、節点の値if (a <= l && r <= b) return data[k];else {//二つの子をマージT vl = query(a, b, k * 2 + 1, l, (l + r) / 2);T vr = query(a, b, k * 2 + 2, (l + r) / 2, r);return Monoid::merge(vl, vr);}}//外から呼ぶ用T query(int a, int b) {return query(a, b, 0, 0, n);}//非再帰版: バグってるかもしれないので定数倍高速化する時以外使わないで//区間[a, b)に対するクエリに答えるT query_fast(int a, int b) {T vl = Monoid::unit(), vr = Monoid::unit();for (int l = a + n, r = b + n; l != r; l >>= 1, r >>= 1) {if (l & 1) vl = Monoid::merge(vl, data[l++ - 1]);if (r & 1) vr = Monoid::merge(data[--r - 1], vr);}return Monoid::merge(vl, vr);}};template <class U = mat>struct RangeMul {using T = U;static T merge(T x, T y) { return mul(x, y); }static void update(T& target, T x) { target = x; }static constexpr T unit() { return T({{1, 0}, {0, 1}}); }};int main() {cin.tie(nullptr);ios::sync_with_stdio(false);int n;cin >> n;HLD::Graph g(n);vector<int> a(n - 1), b(n - 1);for (int i = 0; i < n - 1; i++) {cin >> a[i] >> b[i];g[a[i]].push_back(b[i]);g[b[i]].push_back(a[i]);}HLD hld(g);SegmentTree< RangeMul<> > st(n);int q;cin >> q;for (int i = 0; i < q; i++) {char command;cin >> command;if (command == 'x') {int j;cin >> j;mat x(2, vec(2));for (int k = 0; k < 2; k++) {for (int l = 0; l < 2; l++) {cin >> x[k][l];}}for (auto& seg : hld.edge_path_to_segments(a[j], b[j])) {st.update(seg.first, x);}} else {int j, k;cin >> j >> k;mat ans = RangeMul<>::unit();for (auto& seg : hld.edge_path_to_segments(j, k)) {ans = mul(st.query_fast(seg.first, seg.second), ans);}for (int l = 0; l < 2; l++) {for (int m = 0; m < 2; m++) {cout << ans[l][m] << " \n"[l == 1 && m == 1];}}}}return 0;}