結果
| 問題 |
No.147 試験監督(2)
|
| コンテスト | |
| ユーザー |
maine_honzuki
|
| 提出日時 | 2020-05-24 23:37:02 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,380 bytes |
| コンパイル時間 | 1,733 ms |
| コンパイル使用メモリ | 175,036 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-10-12 12:09:51 |
| 合計ジャッジ時間 | 5,257 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 3 WA * 1 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
const long long mod = 1e9 + 7;
template <uint MD>
struct ModInt {
using M = ModInt;
const static M G;
uint v;
ModInt(ll _v = 0) { set_v(_v % MD + MD); }
M& set_v(uint _v) {
v = (_v < MD) ? _v : _v - MD;
return *this;
}
explicit operator bool() const { return v != 0; }
M operator-() const { return M() - *this; }
M operator+(const M& r) const { return M().set_v(v + r.v); }
M operator-(const M& r) const { return M().set_v(v + MD - r.v); }
M operator*(const M& r) const { return M().set_v(ull(v) * r.v % MD); }
M operator/(const M& r) const { return *this * r.inv(); }
M& operator+=(const M& r) { return *this = *this + r; }
M& operator-=(const M& r) { return *this = *this - r; }
M& operator*=(const M& r) { return *this = *this * r; }
M& operator/=(const M& r) { return *this = *this / r; }
bool operator==(const M& r) const { return v == r.v; }
M pow(ll n) const {
M x = *this, r = 1;
while (n) {
if (n & 1)
r *= x;
x *= x;
n >>= 1;
}
return r;
}
M inv() const { return pow(MD - 2); }
friend ostream& operator<<(ostream& os, const M& r) { return os << r.v; }
friend istream& operator>>(istream& is, M& r) { return is >> r.v; }
};
using Mint = ModInt<mod>;
template <class T>
struct Matrix {
vector<vector<T>> A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {}
Matrix(size_t n) : A(n, vector<T>(n, 0)){};
size_t height() const { return (A.size()); }
size_t width() const { return (A[0].size()); }
inline const vector<T>& operator[](int k) const { return (A.at(k)); }
inline vector<T>& operator[](int k) { return (A.at(k)); }
static Matrix I(size_t n) {
Matrix mat(n);
for (int i = 0; i < n; i++)
mat[i][i] = 1;
return (mat);
}
Matrix& operator+=(const Matrix& B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
(*this)[i][j] += B[i][j];
return (*this);
}
Matrix& operator-=(const Matrix& B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
(*this)[i][j] -= B[i][j];
return (*this);
}
Matrix& operator*=(const Matrix& B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector<vector<T>> C(n, vector<T>(m, 0));
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
for (int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
A.swap(C);
return (*this);
}
Matrix& operator^=(long long k) {
Matrix B = Matrix::I(height());
while (k > 0) {
if (k & 1)
B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix& B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix& B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix& B) const {
return (Matrix(*this) *= B);
}
Matrix operator^(const long long k) const {
return (Matrix(*this) ^= k);
}
friend ostream& operator<<(ostream& os, Matrix& p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; i++) {
os << "[";
for (int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for (int i = 0; i < width(); i++) {
int idx = -1;
for (int j = i; j < width(); j++) {
if (B[j][i] != 0)
idx = j;
}
if (idx == -1)
return (0);
if (i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for (int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for (int j = i + 1; j < width(); j++) {
T a = B[j][i];
for (int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
int main() {
int N;
cin >> N;
Mint ans = 1;
while (N--) {
long long C;
long long D = 0;
string D_str;
cin >> C >> D_str;
for (int i = 0; i < D_str.size(); i++) {
int d = D_str[i] - '0';
D *= 10;
D += d;
D %= (mod - 1);
}
using Mat = Matrix<Mint>;
Mat mat(2);
mat[0][0] = 1;
mat[0][1] = 1;
mat[1][0] = 1;
mat[1][1] = 0;
mat ^= C;
ans *= (mat[0][0] + mat[1][0]).pow(D);
}
cout << ans << endl;
}
maine_honzuki