結果
問題 | No.147 試験監督(2) |
ユーザー | maine_honzuki |
提出日時 | 2020-05-24 23:45:02 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 551 ms / 2,000 ms |
コード長 | 5,390 bytes |
コンパイル時間 | 1,784 ms |
コンパイル使用メモリ | 175,040 KB |
実行使用メモリ | 6,816 KB |
最終ジャッジ日時 | 2024-10-12 12:21:31 |
合計ジャッジ時間 | 4,515 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 535 ms
6,816 KB |
testcase_01 | AC | 544 ms
6,816 KB |
testcase_02 | AC | 551 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,816 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; const long long mod = 1e9 + 7; template <uint MD> struct ModInt { using M = ModInt; const static M G; uint v; ModInt(ll _v = 0) { set_v(_v % MD + MD); } M& set_v(uint _v) { v = (_v < MD) ? _v : _v - MD; return *this; } explicit operator bool() const { return v != 0; } M operator-() const { return M() - *this; } M operator+(const M& r) const { return M().set_v(v + r.v); } M operator-(const M& r) const { return M().set_v(v + MD - r.v); } M operator*(const M& r) const { return M().set_v(ull(v) * r.v % MD); } M operator/(const M& r) const { return *this * r.inv(); } M& operator+=(const M& r) { return *this = *this + r; } M& operator-=(const M& r) { return *this = *this - r; } M& operator*=(const M& r) { return *this = *this * r; } M& operator/=(const M& r) { return *this = *this / r; } bool operator==(const M& r) const { return v == r.v; } M pow(ll n) const { M x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } M inv() const { return pow(MD - 2); } friend ostream& operator<<(ostream& os, const M& r) { return os << r.v; } friend istream& operator>>(istream& is, M& r) { return is >> r.v; } }; using Mint = ModInt<mod>; template <class T> struct Matrix { vector<vector<T>> A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {} Matrix(size_t n) : A(n, vector<T>(n, 0)){}; size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector<T>& operator[](int k) const { return (A.at(k)); } inline vector<T>& operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for (int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix& operator+=(const Matrix& B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix& operator-=(const Matrix& B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix& operator*=(const Matrix& B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector<vector<T>> C(n, vector<T>(m, 0)); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) for (int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix& operator^=(long long k) { Matrix B = Matrix::I(height()); while (k > 0) { if (k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix& B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix& B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix& B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream& operator<<(ostream& os, Matrix& p) { size_t n = p.height(), m = p.width(); for (int i = 0; i < n; i++) { os << "["; for (int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for (int i = 0; i < width(); i++) { int idx = -1; for (int j = i; j < width(); j++) { if (B[j][i] != 0) idx = j; } if (idx == -1) return (0); if (i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for (int j = 0; j < width(); j++) { B[i][j] /= vv; } for (int j = i + 1; j < width(); j++) { T a = B[j][i]; for (int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; int main() { int N; cin >> N; Mint ans = 1; while (N--) { long long C; long long D = 0; string D_str; cin >> C >> D_str; for (int i = 0; i < D_str.size(); i++) { int d = D_str[i] - '0'; D *= 10; D += d; D %= (mod - 1); } using Mat = Matrix<Mint>; Mat mat(2); mat[0][0] = 1; mat[0][1] = 1; mat[1][0] = 1; mat[1][1] = 0; mat ^= C; ans *= (mat[0][0] + mat[1][0]).pow(D + mod - 1); } cout << ans << endl; }