結果
問題 | No.1307 Rotate and Accumulate |
ユーザー | stoq |
提出日時 | 2020-05-28 05:39:38 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 991 ms / 5,000 ms |
コード長 | 3,582 bytes |
コンパイル時間 | 2,700 ms |
コンパイル使用メモリ | 202,896 KB |
最終ジャッジ日時 | 2025-01-10 16:02:40 |
ジャッジサーバーID (参考情報) |
judge3 / judge6 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 19 |
ソースコード
#define MOD_TYPE 1 #pragma region Macros #include <bits/stdc++.h> using namespace std; /* #include <boost/multiprecision/cpp_int.hpp> #include <boost/multiprecision/cpp_dec_float.hpp> using multiInt = boost::multiprecision::cpp_int; using lld = boost::multiprecision::cpp_dec_float_100; */ /* #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") */ using ll = long long int; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; using pld = pair<ld, ld>; template <typename Q_type> using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>; constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353); //constexpr ll MOD = 1; constexpr int INF = (int)1e9; constexpr ll LINF = (ll)4e18; constexpr double PI = acos(-1.0); constexpr double EPS = 1e-10; constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0}; constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0}; #define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i) #define rep(i, n) REP(i, 0, n) #define REPI(i, m, n) for (int i = m; i < (int)(n); ++i) #define repi(i, n) REPI(i, 0, n) #define MP make_pair #define MT make_tuple #define YES(n) cout << ((n) ? "YES" : "NO") << "\n" #define Yes(n) cout << ((n) ? "Yes" : "No") << "\n" #define possible(n) cout << ((n) ? "possible" : "impossible") << "\n" #define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n" #define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n" #define all(v) v.begin(), v.end() #define NP(v) next_permutation(all(v)) #define dbg(x) cerr << #x << ":" << x << "\n"; inline void init_main() { cin.tie(0); ios::sync_with_stdio(false); cout << setprecision(30) << setiosflags(ios::fixed); } template <typename T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <typename T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; } template <typename A, size_t N, typename T> inline void Fill(A (&array)[N], const T &val) { fill((T *)array, (T *)(array + N), val); } template <typename T, typename U> constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept { os << p.first << " " << p.second; return os; } #pragma endregion template <typename U = ld> struct FFT { void DFT(vector<complex<U>>(&f), int inv) { int n = f.size(); if (n == 1) return; vector<complex<U>> f_[2]; rep(i, n) f_[i % 2].push_back(f[i]); DFT(f_[0], inv); DFT(f_[1], inv); complex<U> zeta_pow = 1.0, zeta = polar(U(1.0), inv * 2.0 * U(PI) / n); rep(i, n) { f[i] = f_[0][i % (n / 2)] + zeta_pow * f_[1][i % (n / 2)]; zeta_pow *= zeta; } } template <typename T> vector<U> multiply(vector<T> f, vector<T> g) { int n = 1; while (n < f.size() + g.size()) n *= 2; vector<complex<U>> ft(n), gt(n); rep(i, f.size()) ft[i] = f[i]; rep(i, g.size()) gt[i] = g[i]; DFT(ft, 1); DFT(gt, 1); rep(i, n) ft[i] *= gt[i]; DFT(ft, -1); vector<U> res; rep(i, n) res.push_back(T(ft[i].real() / n)); return res; } }; void solve() { int n, q; cin >> n >> q; vector<double> f(n * 2), g(n + 1, 0); rep(i, n) { cin >> f[i]; f[i + n] = f[i]; } rep(qi, q) { int r; cin >> r; g[n - r]++; } FFT<double> fft; vector<double> h = fft.multiply(f, g); REP(i, n, 2 * n) cout << (ll)round(h[i]) << (i == 2 * n - 1 ? "\n" : " "); } int main() { init_main(); solve(); return 0; }