結果
| 問題 |
No.1307 Rotate and Accumulate
|
| コンテスト | |
| ユーザー |
stoq
|
| 提出日時 | 2020-05-28 06:46:21 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2,017 ms / 5,000 ms |
| コード長 | 3,570 bytes |
| コンパイル時間 | 2,537 ms |
| コンパイル使用メモリ | 203,664 KB |
| 最終ジャッジ日時 | 2025-01-10 16:03:05 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 19 |
ソースコード
#define MOD_TYPE 1
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
/*
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using multiInt = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
*/
/*
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
*/
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
//constexpr ll MOD = 1;
constexpr int INF = (int)1e9;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-10;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
inline void init_main()
{
cin.tie(0);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
}
template <typename T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b)
{
return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
os << p.first << " " << p.second;
return os;
}
#pragma endregion
template <typename U = ld>
struct FFT
{
void DFT(vector<complex<U>>(&f), int inv)
{
int n = f.size();
if (n == 1)
return;
vector<complex<U>> f_[2];
rep(i, n) f_[i % 2].push_back(f[i]);
DFT(f_[0], inv);
DFT(f_[1], inv);
complex<U> zeta_pow = 1.0, zeta = polar(U(1.0), inv * 2.0 * U(PI) / n);
rep(i, n)
{
f[i] = f_[0][i % (n / 2)] + zeta_pow * f_[1][i % (n / 2)];
zeta_pow *= zeta;
}
}
template <typename T>
vector<U> multiply(vector<T> f, vector<T> g)
{
int n = 1;
while (n < f.size() + g.size())
n *= 2;
vector<complex<U>> ft(n), gt(n);
rep(i, f.size()) ft[i] = f[i];
rep(i, g.size()) gt[i] = g[i];
DFT(ft, 1);
DFT(gt, 1);
rep(i, n) ft[i] *= gt[i];
DFT(ft, -1);
vector<U> res;
rep(i, n) res.push_back(T(ft[i].real() / n));
return res;
}
};
void solve()
{
int n, q;
cin >> n >> q;
vector<ld> f(n * 2), g(n + 1, 0);
rep(i, n)
{
cin >> f[i];
f[i + n] = f[i];
}
rep(qi, q)
{
int r;
cin >> r;
g[n - r]++;
}
FFT<ld> fft;
vector<ld> h = fft.multiply(f, g);
REP(i, n, 2 * n)
cout << (ll)round(h[i]) << (i == 2 * n - 1 ? "\n" : " ");
}
int main()
{
init_main();
solve();
return 0;
}
stoq