結果

問題 No.1307 Rotate and Accumulate
ユーザー stoqstoq
提出日時 2020-05-28 06:46:21
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,702 ms / 5,000 ms
コード長 3,570 bytes
コンパイル時間 2,357 ms
コンパイル使用メモリ 210,216 KB
実行使用メモリ 78,632 KB
最終ジャッジ日時 2024-09-14 08:45:43
合計ジャッジ時間 18,420 ms
ジャッジサーバーID
(参考情報)
judge6 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 3 ms
5,376 KB
testcase_04 AC 3 ms
5,376 KB
testcase_05 AC 3 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 824 ms
42,876 KB
testcase_09 AC 830 ms
43,324 KB
testcase_10 AC 834 ms
40,948 KB
testcase_11 AC 840 ms
42,408 KB
testcase_12 AC 833 ms
41,136 KB
testcase_13 AC 102 ms
8,296 KB
testcase_14 AC 406 ms
22,128 KB
testcase_15 AC 1,702 ms
78,500 KB
testcase_16 AC 1,695 ms
78,500 KB
testcase_17 AC 1,690 ms
78,624 KB
testcase_18 AC 1,677 ms
78,500 KB
testcase_19 AC 1,675 ms
78,500 KB
testcase_20 AC 1,691 ms
78,632 KB
testcase_21 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define MOD_TYPE 1

#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
/*
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using multiInt = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
*/
/*
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
*/
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;

constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
//constexpr ll MOD = 1;
constexpr int INF = (int)1e9;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-10;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};

#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";

inline void init_main()
{
  cin.tie(0);
  ios::sync_with_stdio(false);
  cout << setprecision(30) << setiosflags(ios::fixed);
}
template <typename T>
inline bool chmin(T &a, T b)
{
  if (a > b)
  {
    a = b;
    return true;
  }
  return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
  if (a < b)
  {
    a = b;
    return true;
  }
  return false;
}
inline ll CEIL(ll a, ll b)
{
  return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
  fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
  os << p.first << " " << p.second;
  return os;
}
#pragma endregion

template <typename U = ld>
struct FFT
{
  void DFT(vector<complex<U>>(&f), int inv)
  {
    int n = f.size();
    if (n == 1)
      return;
    vector<complex<U>> f_[2];
    rep(i, n) f_[i % 2].push_back(f[i]);
    DFT(f_[0], inv);
    DFT(f_[1], inv);
    complex<U> zeta_pow = 1.0, zeta = polar(U(1.0), inv * 2.0 * U(PI) / n);
    rep(i, n)
    {
      f[i] = f_[0][i % (n / 2)] + zeta_pow * f_[1][i % (n / 2)];
      zeta_pow *= zeta;
    }
  }
  template <typename T>
  vector<U> multiply(vector<T> f, vector<T> g)
  {
    int n = 1;
    while (n < f.size() + g.size())
      n *= 2;
    vector<complex<U>> ft(n), gt(n);
    rep(i, f.size()) ft[i] = f[i];
    rep(i, g.size()) gt[i] = g[i];
    DFT(ft, 1);
    DFT(gt, 1);
    rep(i, n) ft[i] *= gt[i];
    DFT(ft, -1);
    vector<U> res;
    rep(i, n) res.push_back(T(ft[i].real() / n));
    return res;
  }
};

void solve()
{
  int n, q;
  cin >> n >> q;
  vector<ld> f(n * 2), g(n + 1, 0);
  rep(i, n)
  {
    cin >> f[i];
    f[i + n] = f[i];
  }
  rep(qi, q)
  {
    int r;
    cin >> r;
    g[n - r]++;
  }
  FFT<ld> fft;
  vector<ld> h = fft.multiply(f, g);
  REP(i, n, 2 * n)
  cout << (ll)round(h[i]) << (i == 2 * n - 1 ? "\n" : " ");
}

int main()
{
  init_main();

  solve();

  return 0;
}
0