結果
問題 | No.1068 #いろいろな色 / Red and Blue and more various colors (Hard) |
ユーザー | jell |
提出日時 | 2020-05-29 21:35:24 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 15,407 bytes |
コンパイル時間 | 3,273 ms |
コンパイル使用メモリ | 235,240 KB |
実行使用メモリ | 20,516 KB |
最終ジャッジ日時 | 2024-11-06 02:44:30 |
合計ジャッジ時間 | 21,760 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 13 ms
6,820 KB |
testcase_04 | AC | 10 ms
6,816 KB |
testcase_05 | AC | 10 ms
6,816 KB |
testcase_06 | AC | 8 ms
6,820 KB |
testcase_07 | AC | 8 ms
6,820 KB |
testcase_08 | AC | 10 ms
6,816 KB |
testcase_09 | AC | 11 ms
6,816 KB |
testcase_10 | AC | 5 ms
6,816 KB |
testcase_11 | AC | 7 ms
6,820 KB |
testcase_12 | AC | 5 ms
6,820 KB |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | RE | - |
testcase_16 | RE | - |
testcase_17 | RE | - |
testcase_18 | RE | - |
testcase_19 | RE | - |
testcase_20 | RE | - |
testcase_21 | RE | - |
testcase_22 | RE | - |
testcase_23 | RE | - |
testcase_24 | RE | - |
testcase_25 | RE | - |
testcase_26 | RE | - |
testcase_27 | RE | - |
testcase_28 | RE | - |
testcase_29 | AC | 751 ms
19,620 KB |
testcase_30 | AC | 743 ms
19,492 KB |
testcase_31 | AC | 2 ms
6,816 KB |
ソースコード
#pragma region preprocessor #ifdef LOCAL //* #define _GLIBCXX_DEBUG // gcc /*/ #define _LIBCPP_DEBUG 0 // clang //*/ #define __clock__ // #define __buffer_check__ #else #pragma GCC optimize("Ofast") // #define __buffer_check__ // #define NDEBUG #endif #define __precision__ 15 #define iostream_untie true #include <bits/stdc++.h> #include <ext/rope> #define __all(v) std::begin(v), std::end(v) #define __rall(v) std::rbegin(v), std::rend(v) #define __popcount(n) __builtin_popcountll(n) #define __clz32(n) __builtin_clz(n) #define __clz64(n) __builtin_clzll(n) #define __ctz32(n) __builtin_ctz(n) #define __ctz64(n) __builtin_ctzll(n) #ifdef __clock__ #include "clock.hpp" #else #define build_clock() ((void)0) #define set_clock() ((void)0) #define get_clock() ((void)0) #endif #ifdef LOCAL #include "dump.hpp" #define mesg(str) std::cerr << "[ " << __LINE__ << " : " << __FUNCTION__ << " ] " << str << "\n" #else #define dump(...) ((void)0) #define mesg(str) ((void)0) #endif #pragma endregion // preprocessor #pragma region std-overload namespace std { // hash template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } }; template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } }; // iostream template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; } template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; } template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } }; template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } }; template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); } template <> istream &operator>>(istream &is, tuple<> &t) { return is; } template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } }; template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } }; template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); } template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; } template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr> istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; } template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr> ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; } } // namespace std #pragma endregion // std-overload #pragma region executive-setting namespace setting { using namespace std; using namespace chrono; system_clock::time_point start_time, end_time; long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); } void print_elapsed_time() { cerr << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n\n"; } void buffer_check() { char bufc; if(cin >> bufc) cerr << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; } struct setupper { setupper() { if(iostream_untie) ios::sync_with_stdio(false), cin.tie(nullptr); cout << fixed << setprecision(__precision__); #ifdef stderr_path freopen(stderr_path, "a", stderr); #endif #ifdef LOCAL cerr << fixed << setprecision(__precision__) << boolalpha << "\n----- stderr at LOCAL -----\n\n"; #endif #ifdef __clock__ start_time = system_clock::now(); atexit(print_elapsed_time); #endif #ifdef __buffer_check__ atexit(buffer_check); #endif } } __setupper; // struct setupper } // namespace setting #pragma endregion // executive-setting #pragma region fucntion-utility // lambda wrapper for recursive method. template <class lambda_type> class make_recursive { lambda_type func; public: make_recursive(lambda_type &&f) : func(std::move(f)) {} template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); } }; template <class T, class... types> T read(types... args) noexcept { typename std::remove_const<T>::type obj(args...); std::cin >> obj; return obj; } // #define input(type, var, ...) type var{read<type>(__VA_ARGS__)} // substitute y for x if x > y. template <class T> inline bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; } // substitute y for x if x < y. template <class T> inline bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; } // binary search on discrete range. template <class iter_type, class pred_type> iter_type binary(iter_type __ok, iter_type __ng, pred_type pred) { assert(__ok != __ng); std::ptrdiff_t dist(__ng - __ok); while(std::abs(dist) > 1) { iter_type mid(__ok + dist / 2); if(pred(mid)) __ok = mid, dist -= dist / 2; else __ng = mid, dist /= 2; } return __ok; } // binary search on real numbers. template <class pred_type> long double binary(long double __ok, long double __ng, const long double eps, pred_type pred) { assert(__ok != __ng); while(std::abs(__ok - __ng) > eps) { long double mid{(__ok + __ng) / 2}; (pred(mid) ? __ok : __ng) = mid; } return __ok; } // trinary search on discrete range. template <class iter_type, class comp_type> iter_type trinary(iter_type __first, iter_type __last, comp_type comp) { assert(__first < __last); std::ptrdiff_t dist(__last - __first); while(dist > 2) { iter_type __left(__first + dist / 3), __right = (__first + dist * 2 / 3); if(comp(__left, __right)) __last = __right, dist = dist * 2 / 3; else __first = __left, dist -= dist / 3; } if(dist > 1 && comp(next(__first), __first)) ++__first; return __first; } // trinary search on real numbers. template <class comp_type> long double trinary(long double __first, long double __last, const long double eps, comp_type comp) { assert(__first < __last); while(__last - __first > eps) { long double __left{(__first * 2 + __last) / 3}, __right{(__first + __last * 2) / 3}; if(comp(__left, __right)) __last = __right; else __first = __left; } return __first; } // size of array. template <class A, size_t N> size_t size(A (&array)[N]) { return N; } // be careful that val is type-sensitive. template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); } #pragma endregion // function-utility #pragma region using-alias using namespace std; using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t; using p32 = pair<i32, i32>; using p64 = pair<i64, i64>; template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>; template <class T> using hashset = unordered_set<T>; template <class Key, class Value> using hashmap = unordered_map<Key, Value>; using namespace __gnu_cxx; #pragma endregion // using-alias #pragma region library #ifndef number_theoretic_transform_hpp #define number_theoretic_transform_hpp #include <algorithm> #include <cassert> #include <iostream> #include <vector> namespace number_theoretic_transform { constexpr int mod = 998244353; constexpr int primitive = 3; class modint { int val; public: constexpr modint() noexcept : val{0} {} constexpr modint(long long x) noexcept : val((x %= mod) < 0 ? mod + x : x) {} constexpr long long value() const noexcept { return val; } constexpr modint operator++(int) noexcept { modint t = *this; return ++val, t; } constexpr modint operator--(int) noexcept { modint t = *this; return --val, t; } constexpr modint &operator++() noexcept { return ++val, *this; } constexpr modint &operator--() noexcept { return --val, *this; } constexpr modint operator-() const noexcept { return modint(-val); } constexpr modint &operator+=(const modint &other) noexcept { return (val += other.val) < mod ? 0 : val -= mod, *this; } constexpr modint &operator-=(const modint &other) noexcept { return (val += mod - other.val) < mod ? 0 : val -= mod, *this; } constexpr modint &operator*=(const modint &other) noexcept { return val = (long long)val * other.val % mod, *this; } constexpr modint &operator/=(const modint &other) noexcept { return *this *= inverse(other); } constexpr modint operator+(const modint &other) const noexcept { return modint(*this) += other; } constexpr modint operator-(const modint &other) const noexcept { return modint(*this) -= other; } constexpr modint operator*(const modint &other) const noexcept { return modint(*this) *= other; } constexpr modint operator/(const modint &other) const noexcept { return modint(*this) /= other; } constexpr bool operator==(const modint &other) const noexcept { return val == other.val; } constexpr bool operator!=(const modint &other) const noexcept { return val != other.val; } constexpr bool operator!() const noexcept { return !val; } friend constexpr modint operator+(long long x, modint y) noexcept { return modint(x) + y; } friend constexpr modint operator-(long long x, modint y) noexcept { return modint(x) - y; } friend constexpr modint operator*(long long x, modint y) noexcept { return modint(x) * y; } friend constexpr modint operator/(long long x, modint y) noexcept { return modint(x) / y; } friend constexpr modint inverse(const modint &other) noexcept { assert(other != 0); int a{mod}, b{other.val}, u{}, v{1}, t{}; while(b) t = a / b, a ^= b ^= (a -= t * b) ^= b, u ^= v ^= (u -= t * v) ^= v; return {u}; } friend constexpr modint pow(modint other, long long e) noexcept { if(e < 0) e = e % (mod - 1) + mod - 1; modint res{1}; while(e) { if(e & 1) res *= other; other *= other, e >>= 1; } return res; } friend std::ostream &operator<<(std::ostream &os, const modint &other) noexcept { return os << other.val; } friend std::istream &operator>>(std::istream &is, modint &other) noexcept { long long val; other = {(is >> val, val)}; return is; } }; // class modint class zeta_calc { static constexpr size_t n = __builtin_ctz(mod - 1); modint _zeta[n + 1]; public: constexpr zeta_calc() : _zeta{} { _zeta[n] = pow(modint(primitive), (mod - 1) / (1 << n)); for(size_t i{n}; i; --i) _zeta[i - 1] = _zeta[i] * _zeta[i]; } constexpr modint operator[](size_t k) const { return _zeta[k]; } }; // class zeta_calc constexpr zeta_calc zeta; class inv_calc { static constexpr size_t n = __builtin_ctz(mod - 1); modint _inv[n + 1]; public: constexpr inv_calc() : _inv{1, (mod + 1) / 2} { for(size_t i{1}; i < n; ++i) _inv[i + 1] = _inv[i] * _inv[1]; } constexpr modint operator[](size_t k) const { return _inv[k]; } }; // class inv_calc constexpr inv_calc inv; using poly_t = std::vector<modint>; void discrete_Fourier_transform(poly_t &f) { const size_t n{f.size()}, mask{n - 1}; assert(__builtin_popcount(n) == 1); // degree of f must be a power of two. static poly_t g; g.resize(n); for(size_t i{n >> 1}, ii{1}; i; i >>= 1, ++ii, swap(f, g)) { modint powzeta{1}; for(size_t j{}; j < n; powzeta *= zeta[ii]) { for(size_t k{}, x{mask & j << 1}, y{mask & (i + (j << 1))}; k < i; ++k, ++j, ++x, ++y) { g[j] = f[x] + powzeta * f[y]; } } } } void inverse_discrete_Fourier_transform(poly_t &f) { discrete_Fourier_transform(f), reverse(next(f.begin()), f.end()); const size_t k = __builtin_ctz(f.size()); for(modint &e : f) e *= inv[k]; } poly_t convolute(poly_t f, poly_t g) { if(f.empty() || g.empty()) return poly_t(); const size_t deg_f{f.size() - 1}, deg_g{g.size() - 1}, deg_h{deg_f + deg_g}, n(1u << (32 - __builtin_clz(deg_h))); static poly_t h; f.resize(n, 0), g.resize(n, 0), h.resize(n); discrete_Fourier_transform(f), discrete_Fourier_transform(g); for(size_t i{}; i < n; ++i) h[i] = f[i] * g[i]; inverse_discrete_Fourier_transform(h); h.resize(deg_h + 1); return h; } } // namespace Number_theoretic_transform #endif // number_theoretic_transform_hpp #pragma endregion // library #pragma region main-code struct solver; template <class> void main_(); int main() { main_<solver>(); } template <class solver> void main_() { unsigned t = 1; #ifdef LOCAL t = 1; #endif // t = -1; // infinite loop // cin >> t; // case number given while(t--) solver(); } struct solver { solver() { using namespace number_theoretic_transform; int n,Q; cin>>n>>Q; vector<poly_t> pol(n); for(int i=0; i<n; ++i) { int a; cin>>a; --a; pol[i]={1,a}; } for(;pol.size()>1;) { vector<poly_t> nxt; for(size_t k=0; k<pol.size(); k+=2) { if(k+1==pol.size()) { nxt.emplace_back(pol[k]); continue; } nxt.emplace_back(convolute(pol[k],pol[k+1])); } swap(nxt,pol); } auto res=pol.front(); while(Q--) { int b; cin>>b; cout << res[n-b] << "\n"; } } }; #pragma endregion // main-code