結果

問題 No.1068 #いろいろな色 / Red and Blue and more various colors (Hard)
ユーザー jelljell
提出日時 2020-05-29 21:41:27
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 767 ms / 3,500 ms
コード長 15,407 bytes
コンパイル時間 3,461 ms
コンパイル使用メモリ 235,660 KB
実行使用メモリ 20,260 KB
最終ジャッジ日時 2024-11-06 03:05:33
合計ジャッジ時間 18,852 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 13 ms
6,820 KB
testcase_04 AC 9 ms
6,820 KB
testcase_05 AC 11 ms
6,816 KB
testcase_06 AC 8 ms
6,816 KB
testcase_07 AC 7 ms
6,820 KB
testcase_08 AC 10 ms
6,820 KB
testcase_09 AC 11 ms
6,820 KB
testcase_10 AC 6 ms
6,820 KB
testcase_11 AC 7 ms
6,820 KB
testcase_12 AC 5 ms
6,816 KB
testcase_13 AC 760 ms
19,492 KB
testcase_14 AC 759 ms
19,492 KB
testcase_15 AC 762 ms
19,876 KB
testcase_16 AC 762 ms
19,612 KB
testcase_17 AC 763 ms
19,616 KB
testcase_18 AC 767 ms
20,136 KB
testcase_19 AC 766 ms
19,492 KB
testcase_20 AC 763 ms
19,620 KB
testcase_21 AC 766 ms
20,000 KB
testcase_22 AC 763 ms
20,260 KB
testcase_23 AC 765 ms
19,616 KB
testcase_24 AC 760 ms
19,748 KB
testcase_25 AC 760 ms
19,488 KB
testcase_26 AC 763 ms
19,744 KB
testcase_27 AC 759 ms
19,880 KB
testcase_28 AC 761 ms
19,616 KB
testcase_29 AC 750 ms
19,616 KB
testcase_30 AC 748 ms
20,004 KB
testcase_31 AC 2 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma region preprocessor
#ifdef LOCAL
//*
    #define _GLIBCXX_DEBUG  // gcc
/*/
    #define _LIBCPP_DEBUG 0 // clang
//*/
    #define __clock__
    // #define __buffer_check__
#else
    #pragma GCC optimize("Ofast")
    // #define __buffer_check__
    // #define NDEBUG
#endif
#define __precision__ 15
#define iostream_untie true
#include <bits/stdc++.h>
#include <ext/rope>
#define __all(v) std::begin(v), std::end(v)
#define __rall(v) std::rbegin(v), std::rend(v)
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)

#ifdef __clock__
    #include "clock.hpp"
#else
    #define build_clock() ((void)0)
    #define set_clock() ((void)0)
    #define get_clock() ((void)0)
#endif

#ifdef LOCAL
    #include "dump.hpp"
    #define mesg(str) std::cerr << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]  " << str << "\n"
#else
    #define dump(...) ((void)0)
    #define mesg(str) ((void)0)
#endif
#pragma endregion // preprocessor

#pragma region std-overload
namespace std
{
    // hash
    template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
    template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
    template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
    template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
    template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
    // iostream
    template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
    template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
    template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
    template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
    template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
    template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
    template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
    template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
    template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
    template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std
#pragma endregion // std-overload

#pragma region executive-setting
namespace setting
{
    using namespace std;
    using namespace chrono;
    system_clock::time_point start_time, end_time;
    long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }
    void print_elapsed_time() { cerr << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n\n"; }
    void buffer_check() { char bufc; if(cin >> bufc) cerr << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; }
    struct setupper
    {
        setupper()
        {
            if(iostream_untie) ios::sync_with_stdio(false), cin.tie(nullptr);
            cout << fixed << setprecision(__precision__);
    #ifdef stderr_path
            freopen(stderr_path, "a", stderr);
    #endif
    #ifdef LOCAL
            cerr << fixed << setprecision(__precision__) << boolalpha << "\n----- stderr at LOCAL -----\n\n";
    #endif
    #ifdef __clock__
            start_time = system_clock::now();
            atexit(print_elapsed_time);
    #endif
    #ifdef __buffer_check__
            atexit(buffer_check);
    #endif
        }
    } __setupper; // struct setupper
} // namespace setting
#pragma endregion // executive-setting

#pragma region fucntion-utility
// lambda wrapper for recursive method.
template <class lambda_type>
class make_recursive
{
    lambda_type func;
public:
    make_recursive(lambda_type &&f) : func(std::move(f)) {}
    template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); }
};
template <class T, class... types> T read(types... args) noexcept { typename std::remove_const<T>::type obj(args...); std::cin >> obj; return obj; }
// #define input(type, var, ...) type var{read<type>(__VA_ARGS__)}
// substitute y for x if x > y.
template <class T> inline bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search on discrete range.
template <class iter_type, class pred_type>
iter_type binary(iter_type __ok, iter_type __ng, pred_type pred)
{
    assert(__ok != __ng);
    std::ptrdiff_t dist(__ng - __ok);
    while(std::abs(dist) > 1)
    {
        iter_type mid(__ok + dist / 2);
        if(pred(mid)) __ok = mid, dist -= dist / 2;
        else __ng = mid, dist /= 2;
    }
    return __ok;
}
// binary search on real numbers.
template <class pred_type>
long double binary(long double __ok, long double __ng, const long double eps, pred_type pred)
{
    assert(__ok != __ng);
    while(std::abs(__ok - __ng) > eps)
    {
        long double mid{(__ok + __ng) / 2};
        (pred(mid) ? __ok : __ng) = mid;
    }
    return __ok;
}
// trinary search on discrete range.
template <class iter_type, class comp_type>
iter_type trinary(iter_type __first, iter_type __last, comp_type comp)
{
    assert(__first < __last);
    std::ptrdiff_t dist(__last - __first);
    while(dist > 2)
    {
        iter_type __left(__first + dist / 3), __right = (__first + dist * 2 / 3);
        if(comp(__left, __right)) __last = __right, dist = dist * 2 / 3;
        else __first = __left, dist -= dist / 3;
    }
    if(dist > 1 && comp(next(__first), __first)) ++__first;
    return __first;
}
// trinary search on real numbers.
template <class comp_type>
long double trinary(long double __first, long double __last, const long double eps, comp_type comp)
{
    assert(__first < __last);
    while(__last - __first > eps)
    {
        long double __left{(__first * 2 + __last) / 3}, __right{(__first + __last * 2) / 3};
        if(comp(__left, __right)) __last = __right;
        else __first = __left;
    }
    return __first;
}
// size of array.
template <class A, size_t N> size_t size(A (&array)[N]) { return N; }
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }
#pragma endregion // function-utility

#pragma region using-alias
using namespace std;
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using p32 = pair<i32, i32>; using p64 = pair<i64, i64>;
template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>;
template <class T> using hashset = unordered_set<T>;
template <class Key, class Value> using hashmap = unordered_map<Key, Value>;
using namespace __gnu_cxx;
#pragma endregion // using-alias

#pragma region library

#ifndef number_theoretic_transform_hpp
#define number_theoretic_transform_hpp

#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>

namespace number_theoretic_transform
{
    constexpr int mod = 998244353;
    constexpr int primitive = 3;

    class modint
    {
        int val;
    public:
        constexpr modint() noexcept : val{0} {}
        constexpr modint(long long x) noexcept : val((x %= mod) < 0 ? mod + x : x) {}
        constexpr long long value() const noexcept { return val; }
        constexpr modint operator++(int) noexcept { modint t = *this; return ++val, t; }
        constexpr modint operator--(int) noexcept { modint t = *this; return --val, t; }
        constexpr modint &operator++() noexcept { return ++val, *this; }
        constexpr modint &operator--() noexcept { return --val, *this; }
        constexpr modint operator-() const noexcept { return modint(-val); }
        constexpr modint &operator+=(const modint &other) noexcept { return (val += other.val) < mod ? 0 : val -= mod, *this; }
        constexpr modint &operator-=(const modint &other) noexcept { return (val += mod - other.val) < mod ? 0 : val -= mod, *this; }
        constexpr modint &operator*=(const modint &other) noexcept { return val = (long long)val * other.val % mod, *this; }
        constexpr modint &operator/=(const modint &other) noexcept { return *this *= inverse(other); }
        constexpr modint operator+(const modint &other) const noexcept { return modint(*this) += other; }
        constexpr modint operator-(const modint &other) const noexcept { return modint(*this) -= other; }
        constexpr modint operator*(const modint &other) const noexcept { return modint(*this) *= other; }
        constexpr modint operator/(const modint &other) const noexcept { return modint(*this) /= other; }
        constexpr bool operator==(const modint &other) const noexcept { return val == other.val; }
        constexpr bool operator!=(const modint &other) const noexcept { return val != other.val; }
        constexpr bool operator!() const noexcept { return !val; }
        friend constexpr modint operator+(long long x, modint y) noexcept { return modint(x) + y; }
        friend constexpr modint operator-(long long x, modint y) noexcept { return modint(x) - y; }
        friend constexpr modint operator*(long long x, modint y) noexcept { return modint(x) * y; }
        friend constexpr modint operator/(long long x, modint y) noexcept { return modint(x) / y; }
        friend constexpr modint inverse(const modint &other) noexcept
        {
            assert(other != 0);
            int a{mod}, b{other.val}, u{}, v{1}, t{};
            while(b) t = a / b, a ^= b ^= (a -= t * b) ^= b, u ^= v ^= (u -= t * v) ^= v;
            return {u};
        }
        friend constexpr modint pow(modint other, long long e) noexcept
        {
            if(e < 0) e = e % (mod - 1) + mod - 1;
            modint res{1};
            while(e) { if(e & 1) res *= other; other *= other, e >>= 1; }
            return res;
        }
        friend std::ostream &operator<<(std::ostream &os, const modint &other) noexcept { return os << other.val; }
        friend std::istream &operator>>(std::istream &is, modint &other) noexcept { long long val; other = {(is >> val, val)}; return is; }
    }; // class modint

    class zeta_calc
    {
        static constexpr size_t n = __builtin_ctz(mod - 1);
        modint _zeta[n + 1];
    public:
        constexpr zeta_calc() : _zeta{}
        {
            _zeta[n] = pow(modint(primitive), (mod - 1) / (1 << n));
            for(size_t i{n}; i; --i) _zeta[i - 1] = _zeta[i] * _zeta[i];
        }
        constexpr modint operator[](size_t k) const { return _zeta[k]; }
    }; // class zeta_calc
    constexpr zeta_calc zeta;

    class inv_calc
    {
        static constexpr size_t n = __builtin_ctz(mod - 1);
        modint _inv[n + 1];
    public:
        constexpr inv_calc() : _inv{1, (mod + 1) / 2} { for(size_t i{1}; i < n; ++i) _inv[i + 1] = _inv[i] * _inv[1]; }
        constexpr modint operator[](size_t k) const { return _inv[k]; }
    }; // class inv_calc
    constexpr inv_calc inv;

    using poly_t = std::vector<modint>;

    void discrete_Fourier_transform(poly_t &f)
    {
        const size_t n{f.size()}, mask{n - 1};
        assert(__builtin_popcount(n) == 1); // degree of f must be a power of two.
        static poly_t g; g.resize(n);
        for(size_t i{n >> 1}, ii{1}; i; i >>= 1, ++ii, swap(f, g))
        {
            modint powzeta{1};
            for(size_t j{}; j < n; powzeta *= zeta[ii])
            {
                for(size_t k{}, x{mask & j << 1}, y{mask & (i + (j << 1))}; k < i; ++k, ++j, ++x, ++y)
                {
                    g[j] = f[x] + powzeta * f[y];
                }
            }
        }
    }

    void inverse_discrete_Fourier_transform(poly_t &f)
    {
        discrete_Fourier_transform(f), reverse(next(f.begin()), f.end());
        const size_t k = __builtin_ctz(f.size()); for(modint &e : f) e *= inv[k];
    }

    poly_t convolute(poly_t f, poly_t g)
    {
        if(f.empty() || g.empty()) return poly_t();
        const size_t deg_f{f.size() - 1}, deg_g{g.size() - 1}, deg_h{deg_f + deg_g}, n(1u << (32 - __builtin_clz(deg_h)));
        static poly_t h;
        f.resize(n, 0), g.resize(n, 0), h.resize(n);
        discrete_Fourier_transform(f), discrete_Fourier_transform(g);
        for(size_t i{}; i < n; ++i) h[i] = f[i] * g[i];
        inverse_discrete_Fourier_transform(h); h.resize(deg_h + 1);
        return h;
    }
} // namespace Number_theoretic_transform

#endif // number_theoretic_transform_hpp


#pragma endregion // library

#pragma region main-code
struct solver; template <class> void main_(); int main() { main_<solver>(); }
template <class solver> void main_()
{
    unsigned t = 1;
#ifdef LOCAL
    t = 1;
#endif
    // t = -1; // infinite loop
    // cin >> t; // case number given

    while(t--) solver();
}

struct solver
{

    solver()
    {
        using namespace number_theoretic_transform;

        int n,Q; cin>>n>>Q;
        vector<poly_t> pol(n);
        for(int i=0; i<n; ++i)
        {
            i64 a; cin>>a; --a;
            pol[i]={1,a};
        }
        for(;pol.size()>1;)
        {
            vector<poly_t> nxt;
            for(size_t k=0; k<pol.size(); k+=2)
            {
                if(k+1==pol.size())
                {
                    nxt.emplace_back(pol[k]);
                    continue;
                }
                nxt.emplace_back(convolute(pol[k],pol[k+1]));
            }
            swap(nxt,pol);
        }
        auto res=pol.front();
        while(Q--)
        {
            int b; cin>>b;
            cout << res[n-b] << "\n";
        }
    }
};
#pragma endregion // main-code
0