結果
問題 | No.1068 #いろいろな色 / Red and Blue and more various colors (Hard) |
ユーザー | IKyopro |
提出日時 | 2020-05-29 22:01:07 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 524 ms / 3,500 ms |
コード長 | 8,031 bytes |
コンパイル時間 | 2,683 ms |
コンパイル使用メモリ | 219,944 KB |
実行使用メモリ | 22,332 KB |
最終ジャッジ日時 | 2024-11-06 04:39:51 |
合計ジャッジ時間 | 13,356 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 12 ms
6,820 KB |
testcase_04 | AC | 7 ms
6,816 KB |
testcase_05 | AC | 8 ms
6,820 KB |
testcase_06 | AC | 7 ms
6,820 KB |
testcase_07 | AC | 7 ms
6,816 KB |
testcase_08 | AC | 8 ms
6,816 KB |
testcase_09 | AC | 8 ms
6,816 KB |
testcase_10 | AC | 5 ms
6,820 KB |
testcase_11 | AC | 7 ms
6,820 KB |
testcase_12 | AC | 4 ms
6,816 KB |
testcase_13 | AC | 511 ms
22,136 KB |
testcase_14 | AC | 516 ms
22,312 KB |
testcase_15 | AC | 517 ms
22,308 KB |
testcase_16 | AC | 511 ms
22,284 KB |
testcase_17 | AC | 511 ms
22,128 KB |
testcase_18 | AC | 509 ms
22,276 KB |
testcase_19 | AC | 508 ms
22,272 KB |
testcase_20 | AC | 507 ms
22,228 KB |
testcase_21 | AC | 524 ms
22,224 KB |
testcase_22 | AC | 513 ms
22,200 KB |
testcase_23 | AC | 518 ms
22,192 KB |
testcase_24 | AC | 515 ms
22,224 KB |
testcase_25 | AC | 512 ms
22,332 KB |
testcase_26 | AC | 516 ms
22,300 KB |
testcase_27 | AC | 516 ms
22,136 KB |
testcase_28 | AC | 471 ms
22,228 KB |
testcase_29 | AC | 449 ms
22,272 KB |
testcase_30 | AC | 454 ms
22,276 KB |
testcase_31 | AC | 2 ms
6,820 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; template <class T, class U> using Pa = pair<T, U>; template <class T> using vec = vector<T>; template <class T> using vvec = vector<vec<T>>; constexpr ll mod = 998244353; struct mint { ll x; mint(ll x=0):x((x%mod+mod)%mod){} friend ostream &operator<<(ostream& os,const mint& a){ return os << a.x; } friend istream &operator>>(istream& is,mint& a){ ll t; is >> t; a = mint(t); return (is); } mint& operator+=(const mint a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this; } mint operator+(const mint a) const { mint res(*this); return res+=a; } mint operator-(const mint a) const { mint res(*this); return res-=a; } mint operator*(const mint a) const { mint res(*this); return res*=a; } mint pow(ll t) const { if (!t) return 1; mint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } // for prime mod mint inv() const { return pow(mod-2); } mint& operator/=(const mint a) { return (*this) *= a.inv(); } mint operator/(const mint a) const { mint res(*this); return res/=a; } bool operator==(const mint& r)const{ return x==r.x; } }; class combination{ public: vector<mint> fact,inv,finv; combination(int N){ fact = inv = finv = vector<mint>(N+1); fact[0] = fact[1] = 1; inv[0] = inv[1] = 1; finv[0] = finv[1] = 1; for(ll i=2;i<=N;i++){ fact[i] = fact[i-1]*i; inv[i] = (mint) mod - inv[mod%i]*(mod/i); finv[i] = finv[i-1]*inv[i]; } } mint f(int i){ return fact[i]; } mint comb(int n,int k){ if(n<k) return 0; if(n<0 || k<0) return 0; return fact[n]*finv[k]*finv[n-k]; } mint hcomb(int n,int k){ if(n==0 && k==0) return 1; return comb(n+k-1,k); } }; namespace FastFourierTransform { using real = double; struct C { real x, y; C() : x(0), y(0) {} C(real x, real y) : x(x), y(y) {} inline C operator+(const C &c) const { return C(x + c.x, y + c.y); } inline C operator-(const C &c) const { return C(x - c.x, y - c.y); } inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); } inline C conj() const { return C(x, -y); } }; const real PI = acosl(-1); int base = 1; vector< C > rts = { {0, 0}, {1, 0} }; vector< int > rev = {0, 1}; void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } while(base < nbase) { real angle = PI * 2.0 / (1 << (base + 1)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; real angle_i = angle * (2 * i + 1 - (1 << base)); rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i)); } ++base; } } void fft(vector< C > &a, int n) { assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { C z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } vector< int64_t > multiply(const vector< int > &a, const vector< int > &b) { int need = (int) a.size() + (int) b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < sz; i++) { int x = (i < (int) a.size() ? a[i] : 0); int y = (i < (int) b.size() ? b[i] : 0); fa[i] = C(x, y); } fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for(int i = 0; i < (sz >> 1); i++) { C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } fft(fa, sz >> 1); vector< int64_t > ret(need); for(int i = 0; i < need; i++) { ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; } }; template< typename T > struct ArbitraryModConvolution { using real = FastFourierTransform::real; using C = FastFourierTransform::C; ArbitraryModConvolution() = default; vector< T > multiply(const vector< T > &a, const vector< T > &b, int need = -1) { if(need == -1) need = a.size() + b.size() - 1; int nbase = 0; while((1 << nbase) < need) nbase++; FastFourierTransform::ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < a.size(); i++) { fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15); } fft(fa, sz); vector< C > fb(sz); if(a == b) { fb = fa; }else{ for(int i = 0; i < b.size(); i++) { fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15); } fft(fb, sz); } real ratio = 0.25 / sz; C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C a1 = (fa[i] + fa[j].conj()); C a2 = (fa[i] - fa[j].conj()) * r2; C b1 = (fb[i] + fb[j].conj()) * r3; C b2 = (fb[i] - fb[j].conj()) * r4; if(i != j) { C c1 = (fa[j] + fa[i].conj()); C c2 = (fa[j] - fa[i].conj()) * r2; C d1 = (fb[j] + fb[i].conj()) * r3; C d2 = (fb[j] - fb[i].conj()) * r4; fa[i] = c1 * d1 + c2 * d2 * r5; fb[i] = c1 * d2 + c2 * d1; } fa[j] = a1 * b1 + a2 * b2 * r5; fb[j] = a1 * b2 + a2 * b1; } fft(fa, sz); fft(fb, sz); vector< T > ret(need); for(int i = 0; i < need; i++) { int64_t aa = llround(fa[i].x); int64_t bb = llround(fb[i].x); int64_t cc = llround(fa[i].y); aa = T(aa).x, bb = T(bb).x, cc = T(cc).x; ret[i] = aa + (bb << 15) + (cc << 30); } return ret; } }; int main(){ cin.tie(0); ios::sync_with_stdio(false); int N,Q; cin >> N >> Q; ArbitraryModConvolution<mint> NTT; vec<ll> A(N); for(int i=0;i<N;i++) cin >> A[i]; auto rec = [&](auto&& self,int l,int r)->vec<mint>{ if(r-l==0) return {1}; if(r-l==1) return {1,A[l]-1}; int m = (l+r)/2; auto L = self(self,l,m),R = self(self,m,r); return NTT.multiply(L,R); }; auto res = rec(rec,0,N); while(Q--){ int b; cin >> b; cout << res[N-b] << "\n"; } }