結果

問題 No.1068 #いろいろな色 / Red and Blue and more various colors (Hard)
ユーザー 👑 tute7627tute7627
提出日時 2020-05-29 22:06:38
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 580 ms / 3,500 ms
コード長 8,007 bytes
コンパイル時間 2,907 ms
コンパイル使用メモリ 222,896 KB
実行使用メモリ 45,968 KB
最終ジャッジ日時 2024-11-06 04:55:58
合計ジャッジ時間 14,914 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 10 ms
6,820 KB
testcase_04 AC 8 ms
6,820 KB
testcase_05 AC 9 ms
6,820 KB
testcase_06 AC 6 ms
6,820 KB
testcase_07 AC 6 ms
6,820 KB
testcase_08 AC 8 ms
6,816 KB
testcase_09 AC 8 ms
6,816 KB
testcase_10 AC 5 ms
6,816 KB
testcase_11 AC 6 ms
6,816 KB
testcase_12 AC 4 ms
6,820 KB
testcase_13 AC 577 ms
45,712 KB
testcase_14 AC 580 ms
45,836 KB
testcase_15 AC 580 ms
45,840 KB
testcase_16 AC 579 ms
45,840 KB
testcase_17 AC 579 ms
45,836 KB
testcase_18 AC 577 ms
45,836 KB
testcase_19 AC 579 ms
45,836 KB
testcase_20 AC 580 ms
45,840 KB
testcase_21 AC 576 ms
45,828 KB
testcase_22 AC 576 ms
45,824 KB
testcase_23 AC 575 ms
45,908 KB
testcase_24 AC 574 ms
45,844 KB
testcase_25 AC 573 ms
45,840 KB
testcase_26 AC 576 ms
45,840 KB
testcase_27 AC 577 ms
45,836 KB
testcase_28 AC 578 ms
45,840 KB
testcase_29 AC 566 ms
45,968 KB
testcase_30 AC 566 ms
45,840 KB
testcase_31 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

//#define _GLIBCXX_DEBUG

#include<bits/stdc++.h>
using namespace std;

#define endl '\n'
#define lfs cout<<fixed<<setprecision(10)
#define ALL(a)  (a).begin(),(a).end()
#define ALLR(a)  (a).rbegin(),(a).rend()
#define spa << " " <<
#define fi first
#define se second
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define EB emplace_back
#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)
#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)
using ll = long long;
using ld = long double;
const ll MOD1 = 1e9+7;
const ll MOD9 = 998244353;
const ll INF = 1e18;
using P = pair<ll, ll>;
template<typename T1, typename T2>
bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}
template<typename T1, typename T2>
bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}
ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}
void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}
void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}
void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}
template<typename T1,typename T2>
void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}  
template<typename T>
void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++)
{cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}};
void debug(vector<string>&v,ll h,ll w){for(ll i=0;i<h;i++)
{for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}};
template<typename T>
void debug(vector<T>&v,ll n){if(n!=0)cout<<v[0];
for(ll i=1;i<n;i++)cout spa v[i];cout<<endl;};
template<typename T>
vector<vector<T>>vec(ll x, ll y, T w){
  vector<vector<T>>v(x,vector<T>(y,w));return v;}
ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}
vector<ll>dx={1,-1,0,0,1,1,-1,-1};
vector<ll>dy={0,0,1,-1,1,-1,1,-1};
template<typename T>
vector<T> make_v(size_t a,T b){return vector<T>(a,b);}
template<typename... Ts>
auto make_v(size_t a,Ts... ts){
  return vector<decltype(make_v(ts...))>(a,make_v(ts...));
}
template<typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2>&p){
  return os << p.first << " " << p.second;
}
//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());
template< int mod >
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }

  static int get_mod() { return mod; }
};

template< typename T >
struct Combination {
  vector< T > _fact, _rfact, _inv;

  Combination(ll sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {
    _fact[0] = _rfact[sz] = _inv[0] = 1;
    for(ll i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;
    _rfact[sz] /= _fact[sz];
    for(ll i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);
    for(ll i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];
  }

  inline T fact(ll k) const { return _fact[k]; }

  inline T rfact(ll k) const { return _rfact[k]; }

  inline T inv(ll k) const { return _inv[k]; }

  T P(ll n, ll r) const {
    if(r < 0 || n < r) return 0;
    return fact(n) * rfact(n - r);
  }

  T C(ll p, ll q) const {
    if(q < 0 || p < q) return 0;
    return fact(p) * rfact(q) * rfact(p - q);
  }

  T H(ll n, ll r) const {
    if(n < 0 || r < 0) return (0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};
using modint = ModInt< MOD9 >;modint pow(ll n, ll x){return modint(n).pow(x);}modint pow(modint n, ll x){return n.pow(x);}
//using modint=ld;
using Comb=Combination<modint>;

template< int mod >
struct NumberTheoreticTransform {

  vector< int > rev, rts;
  int base, max_base, root;

  NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} {
    assert(mod >= 3 && mod % 2 == 1);
    auto tmp = mod - 1;
    max_base = 0;
    while(tmp % 2 == 0) tmp >>= 1, max_base++;
    root = 2;
    while(mod_pow(root, (mod - 1) >> 1) == 1) ++root;
    assert(mod_pow(root, mod - 1) == 1);
    root = mod_pow(root, (mod - 1) >> max_base);
  }

  inline int mod_pow(int x, int n) {
    int ret = 1;
    while(n > 0) {
      if(n & 1) ret = mul(ret, x);
      x = mul(x, x);
      n >>= 1;
    }
    return ret;
  }

  inline int inverse(int x) {
    return mod_pow(x, mod - 2);
  }

  inline unsigned add(unsigned x, unsigned y) {
    x += y;
    if(x >= mod) x -= mod;
    return x;
  }

  inline unsigned mul(unsigned a, unsigned b) {
    return 1ull * a * b % (unsigned long long) mod;
  }

  void ensure_base(int nbase) {
    if(nbase <= base) return;
    rev.resize(1 << nbase);
    rts.resize(1 << nbase);
    for(int i = 0; i < (1 << nbase); i++) {
      rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
    }
    assert(nbase <= max_base);
    while(base < nbase) {
      int z = mod_pow(root, 1 << (max_base - 1 - base));
      for(int i = 1 << (base - 1); i < (1 << base); i++) {
        rts[i << 1] = rts[i];
        rts[(i << 1) + 1] = mul(rts[i], z);
      }
      ++base;
    }
  }


  void ntt(vector< int > &a) {
    const int n = (int) a.size();
    assert((n & (n - 1)) == 0);
    int zeros = __builtin_ctz(n);
    ensure_base(zeros);
    int shift = base - zeros;
    for(int i = 0; i < n; i++) {
      if(i < (rev[i] >> shift)) {
        swap(a[i], a[rev[i] >> shift]);
      }
    }
    for(int k = 1; k < n; k <<= 1) {
      for(int i = 0; i < n; i += 2 * k) {
        for(int j = 0; j < k; j++) {
          int z = mul(a[i + j + k], rts[j + k]);
          a[i + j + k] = add(a[i + j], mod - z);
          a[i + j] = add(a[i + j], z);
        }
      }
    }
  }


  vector< int > multiply(vector< int > a, vector< int > b) {
    int need = a.size() + b.size() - 1;
    int nbase = 1;
    while((1 << nbase) < need) nbase++;
    ensure_base(nbase);
    int sz = 1 << nbase;
    a.resize(sz, 0);
    b.resize(sz, 0);
    ntt(a);
    ntt(b);
    int inv_sz = inverse(sz);
    for(int i = 0; i < sz; i++) {
      a[i] = mul(a[i], mul(b[i], inv_sz));
    }
    reverse(a.begin() + 1, a.end());
    ntt(a);
    a.resize(need);
    return a;
  }
};
int main(){
  cin.tie(nullptr);
  ios_base::sync_with_stdio(false);
  ll res=0,buf=0;
  bool judge = true;
  ll n,q;cin>>n>>q;
  vector<ll>a(n);
  rep(i,0,n)cin>>a[i];
  vector<ll>b(q);
  rep(i,0,q)cin>>b[i];
  queue<int>que;
  rep(i,0,n)que.push(i);
  vector<vector<int>>dp(n);
  rep(i,0,n)dp[i]=vector<int>({int((a[i]-1)%MOD9),1});
  NumberTheoreticTransform<MOD9>ntt;
  while(que.size()>1){
    auto p1=que.front();
    que.pop();
    auto p2=que.front();
    que.pop();
    dp[p1]=ntt.multiply(dp[p1],dp[p2]);
    que.push(p1);
  }
  ll p=que.front();
  rep(i,0,q)cout<<dp[p][b[i]]<<endl;
  return 0;
}
0