結果
問題 | No.1068 #いろいろな色 / Red and Blue and more various colors (Hard) |
ユーザー | 👑 tute7627 |
提出日時 | 2020-05-29 22:06:38 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 580 ms / 3,500 ms |
コード長 | 8,007 bytes |
コンパイル時間 | 2,907 ms |
コンパイル使用メモリ | 222,896 KB |
実行使用メモリ | 45,968 KB |
最終ジャッジ日時 | 2024-11-06 04:55:58 |
合計ジャッジ時間 | 14,914 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 10 ms
6,820 KB |
testcase_04 | AC | 8 ms
6,820 KB |
testcase_05 | AC | 9 ms
6,820 KB |
testcase_06 | AC | 6 ms
6,820 KB |
testcase_07 | AC | 6 ms
6,820 KB |
testcase_08 | AC | 8 ms
6,816 KB |
testcase_09 | AC | 8 ms
6,816 KB |
testcase_10 | AC | 5 ms
6,816 KB |
testcase_11 | AC | 6 ms
6,816 KB |
testcase_12 | AC | 4 ms
6,820 KB |
testcase_13 | AC | 577 ms
45,712 KB |
testcase_14 | AC | 580 ms
45,836 KB |
testcase_15 | AC | 580 ms
45,840 KB |
testcase_16 | AC | 579 ms
45,840 KB |
testcase_17 | AC | 579 ms
45,836 KB |
testcase_18 | AC | 577 ms
45,836 KB |
testcase_19 | AC | 579 ms
45,836 KB |
testcase_20 | AC | 580 ms
45,840 KB |
testcase_21 | AC | 576 ms
45,828 KB |
testcase_22 | AC | 576 ms
45,824 KB |
testcase_23 | AC | 575 ms
45,908 KB |
testcase_24 | AC | 574 ms
45,844 KB |
testcase_25 | AC | 573 ms
45,840 KB |
testcase_26 | AC | 576 ms
45,840 KB |
testcase_27 | AC | 577 ms
45,836 KB |
testcase_28 | AC | 578 ms
45,840 KB |
testcase_29 | AC | 566 ms
45,968 KB |
testcase_30 | AC | 566 ms
45,840 KB |
testcase_31 | AC | 2 ms
6,816 KB |
ソースコード
//#define _GLIBCXX_DEBUG #include<bits/stdc++.h> using namespace std; #define endl '\n' #define lfs cout<<fixed<<setprecision(10) #define ALL(a) (a).begin(),(a).end() #define ALLR(a) (a).rbegin(),(a).rend() #define spa << " " << #define fi first #define se second #define MP make_pair #define MT make_tuple #define PB push_back #define EB emplace_back #define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++) #define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--) using ll = long long; using ld = long double; const ll MOD1 = 1e9+7; const ll MOD9 = 998244353; const ll INF = 1e18; using P = pair<ll, ll>; template<typename T1, typename T2> bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;} template<typename T1, typename T2> bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;} ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});} void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;} void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;} void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;} template<typename T1,typename T2> void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} template<typename T> void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++) {cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}}; void debug(vector<string>&v,ll h,ll w){for(ll i=0;i<h;i++) {for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}}; template<typename T> void debug(vector<T>&v,ll n){if(n!=0)cout<<v[0]; for(ll i=1;i<n;i++)cout spa v[i];cout<<endl;}; template<typename T> vector<vector<T>>vec(ll x, ll y, T w){ vector<vector<T>>v(x,vector<T>(y,w));return v;} ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;} vector<ll>dx={1,-1,0,0,1,1,-1,-1}; vector<ll>dy={0,0,1,-1,1,-1,1,-1}; template<typename T> vector<T> make_v(size_t a,T b){return vector<T>(a,b);} template<typename... Ts> auto make_v(size_t a,Ts... ts){ return vector<decltype(make_v(ts...))>(a,make_v(ts...)); } template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2>&p){ return os << p.first << " " << p.second; } //mt19937 mt(chrono::steady_clock::now().time_since_epoch().count()); template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; template< typename T > struct Combination { vector< T > _fact, _rfact, _inv; Combination(ll sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) { _fact[0] = _rfact[sz] = _inv[0] = 1; for(ll i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i; _rfact[sz] /= _fact[sz]; for(ll i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1); for(ll i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1]; } inline T fact(ll k) const { return _fact[k]; } inline T rfact(ll k) const { return _rfact[k]; } inline T inv(ll k) const { return _inv[k]; } T P(ll n, ll r) const { if(r < 0 || n < r) return 0; return fact(n) * rfact(n - r); } T C(ll p, ll q) const { if(q < 0 || p < q) return 0; return fact(p) * rfact(q) * rfact(p - q); } T H(ll n, ll r) const { if(n < 0 || r < 0) return (0); return r == 0 ? 1 : C(n + r - 1, r); } }; using modint = ModInt< MOD9 >;modint pow(ll n, ll x){return modint(n).pow(x);}modint pow(modint n, ll x){return n.pow(x);} //using modint=ld; using Comb=Combination<modint>; template< int mod > struct NumberTheoreticTransform { vector< int > rev, rts; int base, max_base, root; NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} { assert(mod >= 3 && mod % 2 == 1); auto tmp = mod - 1; max_base = 0; while(tmp % 2 == 0) tmp >>= 1, max_base++; root = 2; while(mod_pow(root, (mod - 1) >> 1) == 1) ++root; assert(mod_pow(root, mod - 1) == 1); root = mod_pow(root, (mod - 1) >> max_base); } inline int mod_pow(int x, int n) { int ret = 1; while(n > 0) { if(n & 1) ret = mul(ret, x); x = mul(x, x); n >>= 1; } return ret; } inline int inverse(int x) { return mod_pow(x, mod - 2); } inline unsigned add(unsigned x, unsigned y) { x += y; if(x >= mod) x -= mod; return x; } inline unsigned mul(unsigned a, unsigned b) { return 1ull * a * b % (unsigned long long) mod; } void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } assert(nbase <= max_base); while(base < nbase) { int z = mod_pow(root, 1 << (max_base - 1 - base)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; rts[(i << 1) + 1] = mul(rts[i], z); } ++base; } } void ntt(vector< int > &a) { const int n = (int) a.size(); assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { int z = mul(a[i + j + k], rts[j + k]); a[i + j + k] = add(a[i + j], mod - z); a[i + j] = add(a[i + j], z); } } } } vector< int > multiply(vector< int > a, vector< int > b) { int need = a.size() + b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; a.resize(sz, 0); b.resize(sz, 0); ntt(a); ntt(b); int inv_sz = inverse(sz); for(int i = 0; i < sz; i++) { a[i] = mul(a[i], mul(b[i], inv_sz)); } reverse(a.begin() + 1, a.end()); ntt(a); a.resize(need); return a; } }; int main(){ cin.tie(nullptr); ios_base::sync_with_stdio(false); ll res=0,buf=0; bool judge = true; ll n,q;cin>>n>>q; vector<ll>a(n); rep(i,0,n)cin>>a[i]; vector<ll>b(q); rep(i,0,q)cin>>b[i]; queue<int>que; rep(i,0,n)que.push(i); vector<vector<int>>dp(n); rep(i,0,n)dp[i]=vector<int>({int((a[i]-1)%MOD9),1}); NumberTheoreticTransform<MOD9>ntt; while(que.size()>1){ auto p1=que.front(); que.pop(); auto p2=que.front(); que.pop(); dp[p1]=ntt.multiply(dp[p1],dp[p2]); que.push(p1); } ll p=que.front(); rep(i,0,q)cout<<dp[p][b[i]]<<endl; return 0; }