結果
問題 | No.1065 電柱 / Pole (Easy) |
ユーザー | Nagisa |
提出日時 | 2020-05-29 22:15:55 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 3,621 bytes |
コンパイル時間 | 358 ms |
コンパイル使用メモリ | 82,484 KB |
実行使用メモリ | 401,404 KB |
最終ジャッジ日時 | 2024-11-06 05:15:44 |
合計ジャッジ時間 | 4,657 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 44 ms
62,720 KB |
testcase_01 | AC | 49 ms
62,524 KB |
testcase_02 | TLE | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
testcase_45 | -- | - |
testcase_46 | -- | - |
testcase_47 | -- | - |
ソースコード
import sys from math import sqrt from collections import deque, namedtuple # we'll use infinity as a default distance to nodes. inf = float('inf') Edge = namedtuple('Edge', 'start, end, cost') def make_edge(start, end, cost=1): return Edge(start, end, cost) class Graph: def __init__(self, edges): # let's check that the data is right wrong_edges = [i for i in edges if len(i) not in [2, 3]] if wrong_edges: raise ValueError('Wrong edges data: {}'.format(wrong_edges)) self.edges = [make_edge(*edge) for edge in edges] @property def vertices(self): return set( sum( ([edge.start, edge.end] for edge in self.edges), [] ) ) def get_node_pairs(self, n1, n2, both_ends=True): if both_ends: node_pairs = [[n1, n2], [n2, n1]] else: node_pairs = [[n1, n2]] return node_pairs def remove_edge(self, n1, n2, both_ends=True): node_pairs = self.get_node_pairs(n1, n2, both_ends) edges = self.edges[:] for edge in edges: if [edge.start, edge.end] in node_pairs: self.edges.remove(edge) def add_edge(self, n1, n2, cost=1, both_ends=True): node_pairs = self.get_node_pairs(n1, n2, both_ends) for edge in self.edges: if [edge.start, edge.end] in node_pairs: return ValueError('Edge {} {} already exists'.format(n1, n2)) self.edges.append(Edge(start=n1, end=n2, cost=cost)) if both_ends: self.edges.append(Edge(start=n2, end=n1, cost=cost)) @property def neighbours(self): neighbours = {vertex: set() for vertex in self.vertices} for edge in self.edges: neighbours[edge.start].add((edge.end, edge.cost)) return neighbours def dijkstra(self, source, dest): assert source in self.vertices, 'Such source node doesn\'t exist' distances = {vertex: inf for vertex in self.vertices} previous_vertices = { vertex: None for vertex in self.vertices } distances[source] = 0 vertices = self.vertices.copy() while vertices: current_vertex = min( vertices, key=lambda vertex: distances[vertex]) vertices.remove(current_vertex) if distances[current_vertex] == inf: break for neighbour, cost in self.neighbours[current_vertex]: alternative_route = distances[current_vertex] + cost if alternative_route < distances[neighbour]: distances[neighbour] = alternative_route previous_vertices[neighbour] = current_vertex path, current_vertex = deque(), dest while previous_vertices[current_vertex] is not None: path.appendleft(current_vertex) current_vertex = previous_vertices[current_vertex] if path: path.appendleft(current_vertex) return distances input = sys.stdin.readline def main(): N, M = map(int,input().split()) X, Y = map(int,input().split()) X -= 1 Y -= 1 D = [] for _ in range(N): D.append(list(map(int,input().split()))) K = [] for _ in range(M): P, Q = map(int,input().split()) P -= 1 Q -= 1 K.append((P,Q,sqrt((D[P][0]-D[Q][0])**2+(D[P][1]-D[Q][1])**2))) K.append((Q,P,sqrt((D[P][0]-D[Q][0])**2+(D[P][1]-D[Q][1])**2))) graph = Graph(K) print(graph.dijkstra(X,Y)[Y]) if __name__ == '__main__': main()