結果
| 問題 |
No.1068 #いろいろな色 / Red and Blue and more various colors (Hard)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-05-29 22:20:58 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 718 ms / 3,500 ms |
| コード長 | 4,324 bytes |
| コンパイル時間 | 2,370 ms |
| コンパイル使用メモリ | 189,540 KB |
| 実行使用メモリ | 24,732 KB |
| 最終ジャッジ日時 | 2024-11-06 05:29:11 |
| 合計ジャッジ時間 | 16,674 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 29 |
ソースコード
#include"bits/stdc++.h"
using namespace std;
#define REP(k,m,n) for(int (k)=(m);(k)<(n);(k)++)
#define rep(i,n) REP((i),0,(n))
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using tp3 = tuple<int, int, int>;
using Mat = vector<vector<ll>>;
constexpr int INF = 1 << 28;
constexpr ll INFL = 1ll << 60;
constexpr int dh[4] = { 0,1,0,-1 };
constexpr int dw[4] = { -1,0,1,0 };
bool isin(const int H, const int W, const int h, const int w) {
return 0 <= h && h < H && 0 <= w && w < W;
}
//constexpr ll MAX1 = 2001;
//constexpr ll MAX2 = MAX1 * MAX1;
// tu3
//inline unsigned int __builtin_ctz(unsigned int x) { unsigned long r; _BitScanForward(&r, x); return r; }
// ei1333
template< ll mod >
struct NumberTheoreticTransform {
vector< ll > rev, rts;
ll base, max_base, root;
NumberTheoreticTransform() : base(1), rev{ 0, 1 }, rts{ 0, 1 } {
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while (tmp % 2 == 0) tmp >>= 1, max_base++;
root = 2;
while (mod_pow(root, (mod - 1) >> 1) == 1) ++root;
assert(mod_pow(root, mod - 1) == 1);
root = mod_pow(root, (mod - 1) >> max_base);
}
inline ll mod_pow(ll x, ll n) {
ll ret = 1;
while (n > 0) {
if (n & 1) ret = mul(ret, x);
x = mul(x, x);
n >>= 1;
}
return ret;
}
inline ll inverse(ll x) {
return mod_pow(x, mod - 2);
}
inline unsigned long long add(unsigned long long x, unsigned long long y) {
x += y;
if (x >= mod) x -= mod;
return x;
}
inline unsigned long long mul(unsigned long long a, unsigned long long b) {
return 1ull * a * b % (unsigned long long) mod;
}
void ensure_base(ll nbase) {
if (nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for (ll i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
assert(nbase <= max_base);
while (base < nbase) {
ll z = mod_pow(root, 1 << (max_base - 1 - base));
for (ll i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
rts[(i << 1) + 1] = mul(rts[i], z);
}
++base;
}
}
void ntt(vector< ll > &a) {
const ll n = (ll)a.size();
assert((n & (n - 1)) == 0);
ll zeros = __builtin_ctz(n);
ensure_base(zeros);
ll shift = base - zeros;
for (ll i = 0; i < n; i++) {
if (i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for (ll k = 1; k < n; k <<= 1) {
for (ll i = 0; i < n; i += 2 * k) {
for (ll j = 0; j < k; j++) {
ll z = mul(a[i + j + k], rts[j + k]);
a[i + j + k] = add(a[i + j], mod - z);
a[i + j] = add(a[i + j], z);
}
}
}
}
vector< ll > multiply(vector< ll > a, vector< ll > b) {
ll need = a.size() + b.size() - 1;
ll nbase = 1;
while ((1 << nbase) < need) nbase++;
ensure_base(nbase);
ll sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
ll inv_sz = inverse(sz);
for (ll i = 0; i < sz; i++) {
a[i] = mul(a[i], mul(b[i], inv_sz));
}
reverse(a.begin() + 1, a.end());
ntt(a);
a.resize(need);
return a;
}
};
// ============ template finished ============
constexpr ll MOD = 998244353;
int main()
{
ll N, Q;
cin >> N >> Q;
vector<ll> A(N), B(Q);
rep(i, N)cin >> A[i];
rep(i, Q)cin >> B[i];
NumberTheoreticTransform<MOD> ntt;
vector<vector<ll>> row(N);
rep(i, N)row[i] = { (A[i] - 1) % MOD,1 };
while (row.size() > 1) {
vector<vector<ll>> next;
rep(i, row.size() / 2) {
auto& vl = row[2 * i];
auto& vr = row[2 * i + 1];
next.push_back(ntt.multiply(vl, vr));
}
if (row.size() % 2 == 1)next.push_back(row.back());
row = next;
}
for (auto b : B)cout << row[0][b] << endl;
return 0;
}