結果

問題 No.1068 #いろいろな色 / Red and Blue and more various colors (Hard)
ユーザー tomatoma
提出日時 2020-05-29 22:20:58
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 718 ms / 3,500 ms
コード長 4,324 bytes
コンパイル時間 2,370 ms
コンパイル使用メモリ 189,540 KB
実行使用メモリ 24,732 KB
最終ジャッジ日時 2024-11-06 05:29:11
合計ジャッジ時間 16,674 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 17 ms
6,816 KB
testcase_04 AC 13 ms
6,820 KB
testcase_05 AC 15 ms
6,820 KB
testcase_06 AC 12 ms
6,816 KB
testcase_07 AC 10 ms
6,820 KB
testcase_08 AC 14 ms
6,820 KB
testcase_09 AC 15 ms
6,816 KB
testcase_10 AC 8 ms
6,820 KB
testcase_11 AC 11 ms
6,816 KB
testcase_12 AC 6 ms
6,816 KB
testcase_13 AC 709 ms
24,596 KB
testcase_14 AC 717 ms
24,600 KB
testcase_15 AC 715 ms
24,600 KB
testcase_16 AC 718 ms
24,604 KB
testcase_17 AC 712 ms
24,596 KB
testcase_18 AC 712 ms
24,728 KB
testcase_19 AC 713 ms
24,728 KB
testcase_20 AC 708 ms
24,600 KB
testcase_21 AC 707 ms
24,732 KB
testcase_22 AC 716 ms
24,596 KB
testcase_23 AC 712 ms
24,600 KB
testcase_24 AC 709 ms
24,600 KB
testcase_25 AC 718 ms
24,600 KB
testcase_26 AC 718 ms
24,600 KB
testcase_27 AC 703 ms
24,596 KB
testcase_28 AC 712 ms
24,600 KB
testcase_29 AC 652 ms
24,600 KB
testcase_30 AC 658 ms
24,604 KB
testcase_31 AC 2 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include"bits/stdc++.h"
using namespace std;
#define REP(k,m,n) for(int (k)=(m);(k)<(n);(k)++)
#define rep(i,n) REP((i),0,(n))
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using tp3 = tuple<int, int, int>;
using Mat = vector<vector<ll>>;
constexpr int INF = 1 << 28;
constexpr ll INFL = 1ll << 60;
constexpr int dh[4] = { 0,1,0,-1 };
constexpr int dw[4] = { -1,0,1,0 };
bool isin(const int H, const int W, const int h, const int w) {
    return 0 <= h && h < H && 0 <= w && w < W;
}

//constexpr ll MAX1 = 2001;
//constexpr ll MAX2 = MAX1 * MAX1;

// tu3
//inline unsigned int __builtin_ctz(unsigned int x) { unsigned long r; _BitScanForward(&r, x); return r; }

// ei1333
template< ll mod >
struct NumberTheoreticTransform {

    vector< ll > rev, rts;
    ll base, max_base, root;

    NumberTheoreticTransform() : base(1), rev{ 0, 1 }, rts{ 0, 1 } {
        assert(mod >= 3 && mod % 2 == 1);
        auto tmp = mod - 1;
        max_base = 0;
        while (tmp % 2 == 0) tmp >>= 1, max_base++;
        root = 2;
        while (mod_pow(root, (mod - 1) >> 1) == 1) ++root;
        assert(mod_pow(root, mod - 1) == 1);
        root = mod_pow(root, (mod - 1) >> max_base);
    }

    inline ll mod_pow(ll x, ll n) {
        ll ret = 1;
        while (n > 0) {
            if (n & 1) ret = mul(ret, x);
            x = mul(x, x);
            n >>= 1;
        }
        return ret;
    }

    inline ll inverse(ll x) {
        return mod_pow(x, mod - 2);
    }

    inline unsigned long long add(unsigned long long x, unsigned long long y) {
        x += y;
        if (x >= mod) x -= mod;
        return x;
    }

    inline unsigned long long mul(unsigned long long a, unsigned long long b) {
        return 1ull * a * b % (unsigned long long) mod;
    }

    void ensure_base(ll nbase) {
        if (nbase <= base) return;
        rev.resize(1 << nbase);
        rts.resize(1 << nbase);
        for (ll i = 0; i < (1 << nbase); i++) {
            rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
        }
        assert(nbase <= max_base);
        while (base < nbase) {
            ll z = mod_pow(root, 1 << (max_base - 1 - base));
            for (ll i = 1 << (base - 1); i < (1 << base); i++) {
                rts[i << 1] = rts[i];
                rts[(i << 1) + 1] = mul(rts[i], z);
            }
            ++base;
        }
    }


    void ntt(vector< ll > &a) {
        const ll n = (ll)a.size();
        assert((n & (n - 1)) == 0);
        ll zeros = __builtin_ctz(n);
        ensure_base(zeros);
        ll shift = base - zeros;
        for (ll i = 0; i < n; i++) {
            if (i < (rev[i] >> shift)) {
                swap(a[i], a[rev[i] >> shift]);
            }
        }
        for (ll k = 1; k < n; k <<= 1) {
            for (ll i = 0; i < n; i += 2 * k) {
                for (ll j = 0; j < k; j++) {
                    ll z = mul(a[i + j + k], rts[j + k]);
                    a[i + j + k] = add(a[i + j], mod - z);
                    a[i + j] = add(a[i + j], z);
                }
            }
        }
    }


    vector< ll > multiply(vector< ll > a, vector< ll > b) {
        ll need = a.size() + b.size() - 1;
        ll nbase = 1;
        while ((1 << nbase) < need) nbase++;
        ensure_base(nbase);
        ll sz = 1 << nbase;
        a.resize(sz, 0);
        b.resize(sz, 0);
        ntt(a);
        ntt(b);
        ll inv_sz = inverse(sz);
        for (ll i = 0; i < sz; i++) {
            a[i] = mul(a[i], mul(b[i], inv_sz));
        }
        reverse(a.begin() + 1, a.end());
        ntt(a);
        a.resize(need);
        return a;
    }
};
// ============ template finished ============

constexpr ll MOD = 998244353;
int main()
{
    ll N, Q;
    cin >> N >> Q;
    vector<ll> A(N), B(Q);
    rep(i, N)cin >> A[i];
    rep(i, Q)cin >> B[i];

    NumberTheoreticTransform<MOD> ntt;
    vector<vector<ll>> row(N);
    rep(i, N)row[i] = { (A[i] - 1) % MOD,1 };
    while (row.size() > 1) {

        vector<vector<ll>> next;
        rep(i, row.size() / 2) {
            auto& vl = row[2 * i];
            auto& vr = row[2 * i + 1];
            next.push_back(ntt.multiply(vl, vr));
        }
        if (row.size() % 2 == 1)next.push_back(row.back());
        row = next;
    }
    for (auto b : B)cout << row[0][b] << endl;
    return 0;
}
0