結果

問題 No.1068 #いろいろな色 / Red and Blue and more various colors (Hard)
ユーザー Egor KulikovEgor Kulikov
提出日時 2020-05-29 22:56:29
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 22,804 bytes
コンパイル時間 2,470 ms
コンパイル使用メモリ 218,620 KB
実行使用メモリ 9,716 KB
最終ジャッジ日時 2024-11-06 07:08:50
合計ジャッジ時間 8,745 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 RE -
testcase_02 RE -
testcase_03 RE -
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
testcase_27 RE -
testcase_28 RE -
testcase_29 RE -
testcase_30 RE -
testcase_31 RE -
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp:79:24: warning: 'template<class _Category, class _Tp, class _Distance, class _Pointer, class _Reference> struct std::iterator' is deprecated [-Wdeprecated-declarations]
   79 | class NumberIterator : iterator<forward_iterator_tag, int> {
      |                        ^~~~~~~~
In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_algobase.h:65,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/specfun.h:45,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/cmath:1935,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/x86_64-pc-linux-gnu/bits/stdc++.h:41,
                 from main.cpp:11:
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_iterator_base_types.h:127:34: note: declared here
  127 |     struct _GLIBCXX17_DEPRECATED iterator
      |                                  ^~~~~~~~

ソースコード

diff #

/**
 * code generated by JHelper
 * More info: https://github.com/AlexeyDmitriev/JHelper
 * @author Egor Kulikov
 */





#include <bits/stdc++.h>

using namespace std;

#define all(v) (v).begin(), (v).end()

using ll = long long;
using ull = unsigned long long;
using li = __int128;
using uli = unsigned __int128;
using ld = long double;
using pii = pair<int, int>;
using vi = vector<int>;

void doReplace() {
}

template <typename T, typename U, typename...Vs>
void doReplace(T& t, const U& u, Vs&&...vs) {
    t = u;
    doReplace(vs...);
}

template <typename T, typename...Us>
T minim(T& was, const T& cand, Us&&...us) {
    if (was > cand) {
        was = cand;
        doReplace(us...);
    }
    return was;
}

template <typename T, typename...Us>
T maxim(T& was, const T& cand, Us&&...us) {
    if (was < cand) {
        was = cand;
        doReplace(us...);
    }
    return was;
}





template <typename D>
D dPower(D base, ll exponent) {
    if (exponent < 0) {
        return dPower(1 / base, -exponent);
    }
    if (exponent == 0) {
        return 1;
    }
    if ((exponent & 1) == 1) {
        return dPower(base, exponent - 1) * base;
    } else {
        D res = dPower(base, exponent >> 1);
        return res * res;
    }
}








class NumberIterator : iterator<forward_iterator_tag, int> {
public:
    int v;

    NumberIterator(int v) : v(v) {}

    operator int &() { return v; }

    int operator*() { return v; }
};

class range : pii {
public:
    range(int begin, int end) : pii(begin, max(begin, end)) {}

    range(int n) : pii(0, max(0, n)) {}

    NumberIterator begin() {
        return first;
    }

    NumberIterator end() {
        return second;
    }
};


template <typename T>
class arr {
    T* b;
    int n;

    void allocate(int sz) {
#ifdef LOCAL
        if (sz < 0) {
            throw "bad alloc";
        }
#endif
        n = sz;
        if (sz > 0) {
            b = (T*)(::operator new(sz * sizeof(T)));
        } else {
            b = nullptr;
        }
    }

public:
    arr(int n = 0) {
        allocate(n);
#ifdef LOCAL
        view();
#endif
    }

    arr(int n, const T& init) {
        allocate(n);
        for (int i : range(n)) {
            ::new((void*)(b + i)) T(init);
        }
#ifdef LOCAL
        view();
#endif
    }

    arr(initializer_list<T> l) : arr(l.size()) {
        if (n > 0) {
            memcpy(b, l.begin(), n * sizeof(T));
        }
    }

    arr(T* b, int n) : arr(b, b + n) {}
    arr(T* b, T* e) : b(b), n(e - b) {}

    int size() const {
        return n;
    }

    T* begin() {
        return b;
    }

    const T* begin() const {
        return b;
    }

    T* end() {
        return b + n;
    }

    const T* end() const {
        return b + n;
    }

    arr<T> clone() const {
        arr<T> res(n);
        copy(b, b + n, res.begin());
        return res;
    }

    T& operator[](int at) {
#ifdef LOCAL
        if (at < 0 || at >= n) {
            throw "Out of bounds";
        }
#endif
        return b[at];
    }

    const T& operator[](int at) const {
#ifdef LOCAL
        if (at < 0 || at >= n) {
            throw "Out of bounds";
        }
#endif
        return b[at];
    }

    bool operator ==(const arr& other) const {
        if (n != other.n) {
            return false;
        }
        for (int i : range(n)) {
            if (b[i] != other.b[i]) {
                return false;
            }
        }
        return true;
    }

    vector<T> view() {
        return vector<T>(b, b + min(n, 50));
    }
};

typedef arr<int> arri;

void decreaseByOne() {}

template <typename T, class...Vs>
void decreaseByOne(arr<T>& array, Vs&...vs) {
    int n = array.size();
    for (int i : range(n)) {
        array[i]--;
    }
    decreaseByOne(vs...);
}

template <typename T, typename U>
void decreaseByOne(arr<pair<T, U>>& v) {
    for (auto& p : v) {
        p.first--;
        p.second--;
    }
}






template <typename T>
class arr2d {
    T* b;
    int d1;
    int d2;
    int sz;

    void allocate(int n) {
#ifdef LOCAL
        if (n < 0) {
            throw "bad alloc";
        }
#endif
        if (n > 0) {
            b = (T*)(::operator new(n * sizeof(T)));
        } else {
            b = nullptr;
        }
    }

public:
    arr2d(int d1 = 0, int d2 = 0) : d1(d1), d2(d2), sz(d1 * d2) {
#ifdef LOCAL
        if (d1 < 0 || d2 < 0) {
            throw "bad alloc";
        }
#endif
        allocate(sz);
#ifdef LOCAL
        view();
#endif
    }

    arr2d(int d1, int d2, const T& init) : d1(d1), d2(d2), sz(d1 * d2) {
#ifdef LOCAL
        if (d1 < 0 || d2 < 0) {
            throw "bad alloc";
        }
#endif
        allocate(sz);
        for (int i : range(sz)) {
            ::new((void*)(b + i)) T(init);
        }
#ifdef LOCAL
        view();
#endif
    }

    arr2d(T* b, int d1, int d2) : b(b), d1(d1), d2(d2), sz(d1 * d2) {}

    int size() const {
        return sz;
    }

    int dim1() const {
        return d1;
    }

    int dim2() const {
        return d2;
    }

    T* begin() {
        return b;
    }

    T* end() {
        return b + sz;
    }

    T& operator()(int i1, int i2) {
#ifdef LOCAL
        if (i1 < 0 || i1 >= d1 || i2 < 0 || i2 >= d2) {
            throw "Out of bounds";
        }
#endif
        return b[i1 * d2 + i2];
    }

    const T& operator()(int i1, int i2) const {
#ifdef LOCAL
        if (i1 < 0 || i1 >= d1 || i2 < 0 || i2 >= d2) {
            throw "Out of bounds";
        }
#endif
        return b[i1 * d2 + i2];
    }

    T& operator[](const pii& p) {
        return operator()(p.first, p.second);
    }

    const T& operator[](const pii& p) const {
        return operator()(p.first, p.second);
    }

    arr<T> operator[](int at) {
#ifdef LOCAL
        if (at < 0 || at >= d1) {
            throw "Out of bounds";
        }
#endif
        return arr<T>(b + at * d2, d2);
    }

    vector<vector<T>> view() {
        vector<vector<T>> res(min(d1, 50));
        for (int i : range(res.size())) {
            res[i] = (*this)[i].view();
        }
        return res;
    }

    arr2d<T> clone() {
        arr2d<T> res(d1, d2);
        copy(b, b + sz, res.b);
        return res;
    }
};



inline bool isWhitespace(int c) {
    return isspace(c) || c == EOF;
}

class Input {
private:
    bool exhausted = false;
    int bufSize = 4096;
    char* buf = new char[bufSize];
    int bufRead = 0;
    int bufAt = 0;

public:
    inline int get() {
        if (exhausted) {
#ifdef LOCAL
            throw "Input exhausted";
#endif
            return EOF;
        }
        if (bufRead == bufAt) {
            bufRead = fread(buf, sizeof(char), bufSize, stdin);
            bufAt = 0;
        }
        if (bufRead == bufAt) {
            exhausted = true;
            return EOF;
        }
        return buf[bufAt++];
    }

private:
    template<typename T>
    inline T readInteger() {
        int c = skipWhitespace();
        int sgn = 1;
        if (c == '-') {
            sgn = -1;
            c = get();
        }
        T res = 0;
        do {
            if (!isdigit(c)) {
#ifdef LOCAL
                throw "Number format error";
#endif
                return sgn * res;
            }
            res *= 10;
            res += c - '0';
            c = get();
        } while (!isWhitespace(c));
        return res * sgn;
    }

    void initArrays(int) {}

    template <typename T, class...Vs>
    void initArrays(int n, arr<T>& array, Vs&...vs) {
        array = arr<T>(n, T());
        initArrays(n, vs...);
    }

    template <typename T, class...Vs>
    void initArrays(int n, vector<T>&, Vs&...vs) {
        initArrays(n, vs...);
    }

    void readImpl(int) {}

    template <typename T, class...Vs>
    void readImpl(int i, arr<T>& arr, Vs&...vs) {
        arr[i] = readType<T>();
        readImpl(i, vs...);
    }

    template <typename T, class...Vs>
    void readImpl(int i, vector<T>& arr, Vs&...vs) {
        arr.push_back(readType<T>());
        readImpl(i, vs...);
    }

public:
    inline int skipWhitespace() {
        int c;
        while (isWhitespace(c = get()) && c != EOF);
        return c;
    }

    inline int readInt() {
        return readInteger<int>();
    }

    inline ll readLong() {
        return readInteger<ll>();
    }

    string readString() {
        int c = skipWhitespace();
        if (c == EOF) {
#ifdef LOCAL
            throw "Input exhausted";
#endif
            return "";
        }
        string res;
        do {
            res.push_back(c);
        } while (!isWhitespace(c = get()));
        return res;
    }

    arri readIntArray(int size) {
        return readArray<int>(size);
    }

    arr<ll> readLongArray(int size) {
        return readArray<ll>(size);
    }

    arr<double> readDoubleArray(int size) {
        return readArray<double>(size);
    }

    arr<string> readStringArray(int size) {
        return readArray<string>(size);
    }

    arr<char> readCharArray(int size) {
        return readArray<char>(size);
    }

    template<typename T>
    T readType() {
        throw "Operation not supported";
    }

    template<typename U, typename V>
    pair<U, V> readType() {
        U first = readType<U>();
        V second = readType<V>();
        return make_pair(first, second);
    }

    template<typename T>
    arr<T> readArray(int n) {
        arr<T> res(n, T());
        for (int i : range(n)) {
            res[i] = readType<T>();
        }
        return res;
    }



    template <class...Vs>
    void readArrays(int n, Vs&...vs) {
        initArrays(n, vs...);
        for (int i : range(n)) {
            readImpl(i, vs...);
        }
    }

    template<typename U, typename V>
    arr<pair<U, V> > readArray(int n) {
        arr<pair<U, V> > res(n);
        for (int i : range(n)) {
            res[i] = readType<U, V>();
        }
        return res;
    }

    template<typename T>
    arr2d<T> readTable(int rows, int cols) {
        arr2d<T> result(rows, cols);
        for (int i : range(rows)) {
            for (int j : range(cols)) {
                result(i, j) = readType<T>();
            }
        }
        return result;
    }

    arr2d<int> readIntTable(int rows, int cols) {
        return readTable<int>(rows, cols);
    }

    arr2d<char> readCharTable(int rows, int cols) {
        return readTable<char>(rows, cols);
    }

    string readLine() {
        int c = get();
        if (c == EOF) {
#ifdef LOCAL
            throw "Input exhausted";
#endif
            return "";
        }
        string res;
        do {
            res.push_back(c);
            c = get();
        } while (c != '\n' && c != '\r' && c != EOF);
        return res;
    }

    inline double readDouble() {
        int c = skipWhitespace();
        int sgn = 1;
        if (c == '-') {
            sgn = -1;
            c = get();
        }
        double res = 0;
        do {
            if (tolower(c) == 'e') {
                return sgn * res * dPower(double(10), readInt());
            }
            if (!isdigit(c)) {
#ifdef LOCAL
                throw "Number format error";
#endif
                return sgn * res;
            }
            res *= 10;
            res += c - '0';
            c = get();
        } while (!isWhitespace(c) && c != '.');
        if (c == '.') {
            double add = 0;
            int length = 0;
            c = get();
            do {
                if (tolower(c) == 'e') {
                    return sgn * (res + add * dPower(double(10), -length)) * dPower(double(10), readInt());
                }
                if (!isdigit(c)) {
#ifdef LOCAL
                    throw "Number format error";
#endif
                    res += add * dPower(10, -length);
                    return res * sgn;
                }
                add *= 10;
                add += c - '0';
                length++;
                c = get();
            } while (!isWhitespace(c));
            res += add * dPower(double(10), -length);
        }
        return res * sgn;
    }

    inline char readChar() {
        int c = skipWhitespace();
        if (c == EOF) {
#ifdef LOCAL
            throw "Input exhausted";
#endif
            return 0;
        }
        return c;
    }

    inline bool isExhausted() { return exhausted; }

    inline void setBufSize(int newBufSize) {
        if (newBufSize > bufSize) {
            char* newBuf = new char[newBufSize];
            memcpy(newBuf, buf, bufSize);
            buf = newBuf;
        }
        bufSize = newBufSize;
    }
};

template<>
inline double Input::readType() {
    return readDouble();
}

template<>
inline int Input::readType() {
    return readInt();
}

template<>
inline ll Input::readType() {
    return readLong();
}

template<>
inline char Input::readType() {
    return readChar();
}

template<>
inline string Input::readType() {
    return readString();
}

Input in;







class Output {
private:
    ostream* out;

    template<typename T>
    inline void printSingle(const T& value) {
        *out << value;
    }

    template<typename T>
    void printSingle(const vector<T>& array) {
        size_t n = array.size();
        for (int i : range(n)) {
            *out << array[i];
            if (i + 1 != n) {
                *out << ' ';
            }
        }
    }

    template<typename T>
    void printSingle(const arr<T>& array) {
        int n = array.size();
        for (int i : range(n)) {
            *out << array[i];
            if (i + 1 != n) {
                *out << ' ';
            }
        }
    }

    template<typename T>
    void printSingle(const arr2d<T>& array) {
        size_t n = array.dim1();
        size_t m = array.dim2();
        for (int i : range(n)) {
            for (int j : range(m)) {
                *out << array(i, j);
                if (j + 1 != m) {
                    *out << ' ';
                }
            }
            if (i + 1 != n) {
                *out << '\n';
            }
        }
    }

    template<typename T, typename U>
    inline void printSingle(const pair<T, U>& value) {
        out << value.first << ' ' << value.second;
    }

public:
    bool autoflush;

    Output(ostream& out, bool autoflush) : out(&out), autoflush(autoflush) {
        setPrecision(20);
    }

    void setOut(ostream& nOut) {
        out = &nOut;
        setPrecision(20);
    }

    inline void print() {}

    template<typename T, typename...Targs>
    inline void print(const T& first, const Targs... args) {
        printSingle(first);
        if (sizeof...(args) != 0) {
            *out << ' ';
            print(args...);
        }
        if (autoflush) {
            flush();
        }
    }

    template<typename...Targs>
    inline void printLine(const Targs... args) {
        print(args...);
        *out << '\n';
        if (autoflush) {
            flush();
        }
    }

    inline void flush() {
        out->flush();
    }

    inline void setPrecision(int digs) {
        *out << fixed << setprecision(digs);
    }
};

Output out(cout, false);
Output err(cerr, true);















template <class Edge>
class Graph {
public:
    int vertexCount;
    int edgeCount = 0;
private:
    vector<vector<Edge>> edges;

public:
    Graph(int vertexCount) : vertexCount(vertexCount), edges(vertexCount, vector<Edge>()) {}

    template <typename...Ts>
    Edge& addEdge(int from, int to, Ts... args) {
#ifdef LOCAL
        if (from < 0 || to < 0 || from >= vertexCount || to >= vertexCount) {
            throw "Out of bounds";
        }
#endif
        edges[from].emplace_back(to, edgeCount, args...);
        Edge& direct = edges[from].back();
        int directId = edges[from].size() - 1;
        if (Edge::reversable) {
            edges[to].push_back(direct.reverseEdge(from));
            Edge& reverse = edges[to].back();
            int revId = edges[to].size() - 1;
            direct.setReverseId(revId);
            reverse.setReverseId(directId);
        }
        edgeCount++;
        return direct;
    }

    vector<Edge>& operator [](int at) {
        return edges[at];
    }

    void addVertices(int count) {
        vertexCount += count;
        edges.resize(vertexCount);
    }

    void clear() {
        edgeCount = 0;
        for (int i : range(vertexCount)) {
            edges[i].clear();
        }
    }
};


class BaseEdge {
public:
    const static bool reversable = false;
    int to;
    int id;

    BaseEdge(int to, int id) : to(to), id(id) {
    }

    BaseEdge reverseEdge(int) {
        throw "Unsupported operation exception";
    }

    void setReverseId(int) {
        throw "Unsupported operation exception";
    }
};




class BiEdge : public BaseEdge {
public:
    const static bool reversable = true;
    int rev;

    BiEdge(int to, int id) : BaseEdge(to, id) {
    }

    void setReverseId(int revId) {
        rev = revId;
    }

    BiEdge reverseEdge(int from) {
        return BiEdge(from, id);
    }

    BiEdge& reverseEdge(Graph<BiEdge>& graph) {
        return graph[to][rev];
    }
};


template <typename W>
class BiWeightedEdge : public BiEdge {
public:
    const static bool reversable = true;
    W weight;

    BiWeightedEdge(int to, int id, W weight) : BiEdge(to, id), weight(weight) {
    }

    BiWeightedEdge reverseEdge(int from) {
        return BiWeightedEdge(from, id, weight);
    }

    BiWeightedEdge<W>& reverseEdge(Graph<BiWeightedEdge<W>>& graph) {
        return graph[to][rev];
    }
};












class IndexedHeap {
    arri heap;
    arri pos;
    int sz = 0;
    function<bool(int, int)> cmp;

    void swap(int i, int j) {
        std::swap(heap[i], heap[j]);
        std::swap(pos[heap[i]], pos[heap[j]]);
    }

public:
    IndexedHeap(int capacity = 0, const function<bool(int, int)> cmp = less<int>()) : heap(arri(capacity)), pos(arri(capacity, -1)), cmp(cmp) {}

    int* begin() {
        return heap.begin();
    }

    int* end() {
        return heap.begin() + sz;
    }

    const int* begin() const {
        return heap.begin();
    }

    const int* end() const {
        return heap.begin() + sz;
    }

    int size() const {
        return sz;
    }

    bool empty() const {
        return sz == 0;
    }

    void siftUp(int index) {
#ifdef LOCAL
        if (index < 0 || index >= sz) {
            throw "Out of bounds";
        }
#endif
        int val = heap[index];
        while (index) {
            int parent = (index - 1) >> 1;
            int parVal = heap[parent];
            if (!cmp(val, parVal)) {
                heap[index] = val;
                pos[val] = index;
                return;
            }
            heap[index] = parVal;
            pos[parVal] = index;
            index = parent;
        }
        heap[0] = val;
        pos[val] = 0;
    }

    void siftDown(int index) {
#ifdef LOCAL
        if (index < 0 || index >= sz) {
            throw "Out of bounds";
        }
#endif
        while (true) {
            int child = (index << 1) + 1;
            if (child >= sz) {
                return;
            }
            if (child + 1 < sz && cmp(heap[child + 1], heap[child])) {
                child++;
            }
            if (!cmp(heap[child], heap[index])) {
                return;
            }
            swap(index, child);
            index = child;
        }
    }

    int operator [](int index) const {
#ifdef LOCAL
        if (index < 0 || index >= sz) {
            throw "Out of bounds";
        }
#endif
        return heap[index];
    }

    void push(int element) {
#ifdef LOCAL
        if (element < 0 || element >= pos.size() || pos[element] != -1) {
            throw "Out of bounds";
        }
#endif
        heap[sz] = element;
        pos[element] = sz;
        siftUp(sz++);
    }

    int at(int element) const {
#ifdef LOCAL
        if (element < 0 || element >= pos.size()) {
            throw "Out of bounds";
        }
#endif
        return pos[element];
    }

    int top() const {
#ifdef LOCAL
        if (sz == 0) {
            throw "Out of bounds";
        }
#endif
        return heap[0];
    }

    int pop() {
#ifdef LOCAL
        if (sz == 0) {
            throw "Out of bounds";
        }
#endif
        int res = heap[0];
        pos[res] = -1;
        if (sz == 1) {
            sz = 0;
            return res;
        }
        heap[0] = heap[--sz];
        pos[heap[0]] = 0;
        siftDown(0);
        return res;
    }

    bool erase(int element) {
#ifdef LOCAL
        if (element < 0 || element >= pos.size()) {
            throw "Out of bounds";
        }
#endif
        int index = pos[element];
        if (index == -1) {
            return false;
        }
        pos[element] = -1;
        if (index == sz - 1) {
            sz--;
            return true;
        }
        heap[index] = heap[--sz];
        pos[heap[index]] = index;
        siftDown(index);
        siftUp(index);
        return true;
    }

    void clear() {
        sz = 0;
        fill(all(pos), -1);
    }
};


template <class Edge, typename W>
arr<pair<W, pair<int, Edge*>>> dijkstra(Graph<Edge>& graph, int source) {
    int n = graph.vertexCount;
    arr<pair<W, pair<int, Edge*>>> res(n, {numeric_limits<W>::max(), make_pair(-1, nullptr)});
    res[source].first = 0;
    IndexedHeap heap(n, [&](int a, int b) -> bool {
        return res[a].first < res[b].first;
    });
    heap.push(source);
    while (!heap.empty()) {
        int cur = heap.pop();
        for (auto& e : graph[cur]) {
            int next = e.to;
            W total = e.weight + res[cur].first;
            if (res[next].first > total) {
                res[next].first = total;
                int at = heap.at(next);
                if (at == -1) {
                    heap.push(next);
                } else {
                    heap.siftUp(at);
                }
                res[next].second = {cur, &e};
            }
        }
    }
    return res;
}


class c {
public:
    void solve() {
        int n = in.readInt();
        int m = in.readInt();
        int from = in.readInt() - 1;
        int to = in.readInt() - 1;
        arri x, y;
        in.readArrays(n, x, y);
        arri u, v;
        in.readArrays(m, u, v);
        decreaseByOne(u, v);

        using Edge = BiWeightedEdge<ld>;
        Graph<Edge> graph(n);
        for (int i : range(m)) {
            graph.addEdge(u[i], v[i], hypot(x[u[i]] - x[v[i]], y[u[i]] - y[v[i]]));
        }
        out.printLine(dijkstra<Edge, ld>(graph, from)[to].first);
    }
};


int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(0);
#ifdef LOCAL_RELEASE
    freopen("input.txt", "r", stdin);
    freopen("output.txt", "w", stdout);
    auto time = clock();
#endif
    c solver;


    solver.solve();
    fflush(stdout);
#ifdef LOCAL_RELEASE
    cerr << clock() - time << endl;
#endif
    return 0;
}
0