結果
問題 | No.1068 #いろいろな色 / Red and Blue and more various colors (Hard) |
ユーザー | kiyoshi0205 |
提出日時 | 2020-05-29 23:11:21 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 545 ms / 3,500 ms |
コード長 | 4,750 bytes |
コンパイル時間 | 3,642 ms |
コンパイル使用メモリ | 208,620 KB |
実行使用メモリ | 21,748 KB |
最終ジャッジ日時 | 2024-11-14 22:36:35 |
合計ジャッジ時間 | 16,429 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 29 |
コンパイルメッセージ
main.cpp: In function 'int main()': main.cpp:166:17: warning: narrowing conversion of '((x - 1) % ((long long int)mod))' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing] 166 | first={(x-1)%mod,1}; | ~~~~~^~~~ main.cpp:166:17: warning: narrowing conversion of '((x - 1) % ((long long int)mod))' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing]
ソースコード
#pragma GCC target("avx") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include<bits/stdc++.h> // #include<ext/pb_ds/assoc_container.hpp> // #include<ext/pb_ds/tree_policy.hpp> // #include<ext/pb_ds/tag_and_trait.hpp> // using namespace __gnu_pbds; // #include<boost/multiprecision/cpp_int.hpp> // namespace multiprecisioninteger = boost::multiprecision; // using cint=multiprecisioninteger::cpp_int; using namespace std; using ll=long long; #define double long double using datas=pair<ll,ll>; using ddatas=pair<double,double>; using tdata=pair<ll,datas>; using vec=vector<ll>; using mat=vector<vec>; using pvec=vector<datas>; using pmat=vector<pvec>; // using llset=tree<ll,null_type,less<ll>,rb_tree_tag,tree_order_statistics_node_update>; #define For(i,a,b) for(i=a;i<(ll)b;++i) #define bFor(i,b,a) for(i=b,--i;i>=(ll)a;--i) #define rep(i,N) For(i,0,N) #define rep1(i,N) For(i,1,N) #define brep(i,N) bFor(i,N,0) #define brep1(i,N) bFor(i,N,1) #define all(v) (v).begin(),(v).end() #define allr(v) (v).rbegin(),(v).rend() #define vsort(v) sort(all(v)) #define vrsort(v) sort(allr(v)) #define endl "\n" #define eb emplace_back #define print(v) cout<<v<<endl #define printyes cout<<"Yes"<<endl #define printno cout<<"No"<<endl #define printYES cout<<"YES"<<endl #define printNO cout<<"NO"<<endl #define output(v) do{bool f=0;for(auto outi:v){cout<<(f?" ":"")<<outi;f=1;}cout<<endl;}while(0) #define matoutput(v) do{for(auto outimat:v)output(outimat);}while(0) // const ll mod=1000000007; const ll mod=998244353; const ll inf=1LL<<60; const double PI = acos(-1); const double eps = 1e-9; template<class T> inline bool chmax(T& a,T b){bool x=a<b;if(x)a=b;return x;} template<class T> inline bool chmin(T& a,T b){bool x=a>b;if(x)a=b;return x;} void startupcpp(){ cin.tie(0); ios::sync_with_stdio(false); cout<<fixed<<setprecision(15); } struct NumberTheoreticTransform { vector< int > rev, rts; int base, max_base, root; NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} { auto tmp = mod - 1; max_base = 0; while(tmp % 2 == 0) tmp >>= 1, max_base++; root = 2; while(mod_pow(root, (mod - 1) >> 1) == 1) ++root; root = mod_pow(root, (mod - 1) >> max_base); } inline int mod_pow(int x, int n) { int ret = 1; while(n > 0) { if(n & 1) ret = mul(ret, x); x = mul(x, x); n >>= 1; } return ret; } inline int inverse(int x) { return mod_pow(x, mod - 2); } inline unsigned add(unsigned x, unsigned y) { x += y; if(x >= mod) x -= mod; return x; } inline unsigned mul(unsigned a, unsigned b) { return 1ull * a * b % (unsigned long long) mod; } void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } assert(nbase <= max_base); while(base < nbase) { int z = mod_pow(root, 1 << (max_base - 1 - base)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; rts[(i << 1) + 1] = mul(rts[i], z); } ++base; } } void ntt(vector< int > &a) { const int n = (int) a.size(); assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { int z = mul(a[i + j + k], rts[j + k]); a[i + j + k] = add(a[i + j], mod - z); a[i + j] = add(a[i + j], z); } } } } vector< int > multiply(vector< int > a, vector< int > b) { int need = a.size() + b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; a.resize(sz, 0); b.resize(sz, 0); ntt(a); ntt(b); int inv_sz = inverse(sz); for(int i = 0; i < sz; i++) { a[i] = mul(a[i], mul(b[i], inv_sz)); } reverse(a.begin() + 1, a.end()); ntt(a); a.resize(need); return a; } }; int main(){ startupcpp(); // int codeforces;cin>>codeforces;while(codeforces--){ ll i,j,x,N,Q; cin>>N>>Q; vector<int> first; vector<vector<int>> v; rep(i,N){ cin>>x; first={(x-1)%mod,1}; v.eb(first); } NumberTheoreticTransform NTT; while(v.size()>1){ vector<vector<int>> ch; rep1(i,v.size()){ ch.eb(NTT.multiply(v[i],v[i-1])); ++i; } if(v.size()&1)ch.eb(v.back()); v.swap(ch); } while(Q--){ cin>>x; print(v[0][x]); } }