結果
| 問題 |
No.1068 #いろいろな色 / Red and Blue and more various colors (Hard)
|
| コンテスト | |
| ユーザー |
kiyoshi0205
|
| 提出日時 | 2020-05-29 23:11:21 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 545 ms / 3,500 ms |
| コード長 | 4,750 bytes |
| コンパイル時間 | 3,642 ms |
| コンパイル使用メモリ | 208,620 KB |
| 実行使用メモリ | 21,748 KB |
| 最終ジャッジ日時 | 2024-11-14 22:36:35 |
| 合計ジャッジ時間 | 16,429 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 29 |
コンパイルメッセージ
main.cpp: In function 'int main()':
main.cpp:166:17: warning: narrowing conversion of '((x - 1) % ((long long int)mod))' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing]
166 | first={(x-1)%mod,1};
| ~~~~~^~~~
main.cpp:166:17: warning: narrowing conversion of '((x - 1) % ((long long int)mod))' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing]
ソースコード
#pragma GCC target("avx")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
// #include<ext/pb_ds/assoc_container.hpp>
// #include<ext/pb_ds/tree_policy.hpp>
// #include<ext/pb_ds/tag_and_trait.hpp>
// using namespace __gnu_pbds;
// #include<boost/multiprecision/cpp_int.hpp>
// namespace multiprecisioninteger = boost::multiprecision;
// using cint=multiprecisioninteger::cpp_int;
using namespace std;
using ll=long long;
#define double long double
using datas=pair<ll,ll>;
using ddatas=pair<double,double>;
using tdata=pair<ll,datas>;
using vec=vector<ll>;
using mat=vector<vec>;
using pvec=vector<datas>;
using pmat=vector<pvec>;
// using llset=tree<ll,null_type,less<ll>,rb_tree_tag,tree_order_statistics_node_update>;
#define For(i,a,b) for(i=a;i<(ll)b;++i)
#define bFor(i,b,a) for(i=b,--i;i>=(ll)a;--i)
#define rep(i,N) For(i,0,N)
#define rep1(i,N) For(i,1,N)
#define brep(i,N) bFor(i,N,0)
#define brep1(i,N) bFor(i,N,1)
#define all(v) (v).begin(),(v).end()
#define allr(v) (v).rbegin(),(v).rend()
#define vsort(v) sort(all(v))
#define vrsort(v) sort(allr(v))
#define endl "\n"
#define eb emplace_back
#define print(v) cout<<v<<endl
#define printyes cout<<"Yes"<<endl
#define printno cout<<"No"<<endl
#define printYES cout<<"YES"<<endl
#define printNO cout<<"NO"<<endl
#define output(v) do{bool f=0;for(auto outi:v){cout<<(f?" ":"")<<outi;f=1;}cout<<endl;}while(0)
#define matoutput(v) do{for(auto outimat:v)output(outimat);}while(0)
// const ll mod=1000000007;
const ll mod=998244353;
const ll inf=1LL<<60;
const double PI = acos(-1);
const double eps = 1e-9;
template<class T> inline bool chmax(T& a,T b){bool x=a<b;if(x)a=b;return x;}
template<class T> inline bool chmin(T& a,T b){bool x=a>b;if(x)a=b;return x;}
void startupcpp(){
cin.tie(0);
ios::sync_with_stdio(false);
cout<<fixed<<setprecision(15);
}
struct NumberTheoreticTransform {
vector< int > rev, rts;
int base, max_base, root;
NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} {
auto tmp = mod - 1;
max_base = 0;
while(tmp % 2 == 0) tmp >>= 1, max_base++;
root = 2;
while(mod_pow(root, (mod - 1) >> 1) == 1) ++root;
root = mod_pow(root, (mod - 1) >> max_base);
}
inline int mod_pow(int x, int n) {
int ret = 1;
while(n > 0) {
if(n & 1) ret = mul(ret, x);
x = mul(x, x);
n >>= 1;
}
return ret;
}
inline int inverse(int x) {
return mod_pow(x, mod - 2);
}
inline unsigned add(unsigned x, unsigned y) {
x += y;
if(x >= mod) x -= mod;
return x;
}
inline unsigned mul(unsigned a, unsigned b) {
return 1ull * a * b % (unsigned long long) mod;
}
void ensure_base(int nbase) {
if(nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for(int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
assert(nbase <= max_base);
while(base < nbase) {
int z = mod_pow(root, 1 << (max_base - 1 - base));
for(int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
rts[(i << 1) + 1] = mul(rts[i], z);
}
++base;
}
}
void ntt(vector< int > &a) {
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for(int i = 0; i < n; i++) {
if(i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for(int k = 1; k < n; k <<= 1) {
for(int i = 0; i < n; i += 2 * k) {
for(int j = 0; j < k; j++) {
int z = mul(a[i + j + k], rts[j + k]);
a[i + j + k] = add(a[i + j], mod - z);
a[i + j] = add(a[i + j], z);
}
}
}
}
vector< int > multiply(vector< int > a, vector< int > b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
int inv_sz = inverse(sz);
for(int i = 0; i < sz; i++) {
a[i] = mul(a[i], mul(b[i], inv_sz));
}
reverse(a.begin() + 1, a.end());
ntt(a);
a.resize(need);
return a;
}
};
int main(){
startupcpp();
// int codeforces;cin>>codeforces;while(codeforces--){
ll i,j,x,N,Q;
cin>>N>>Q;
vector<int> first;
vector<vector<int>> v;
rep(i,N){
cin>>x;
first={(x-1)%mod,1};
v.eb(first);
}
NumberTheoreticTransform NTT;
while(v.size()>1){
vector<vector<int>> ch;
rep1(i,v.size()){
ch.eb(NTT.multiply(v[i],v[i-1]));
++i;
}
if(v.size()&1)ch.eb(v.back());
v.swap(ch);
}
while(Q--){
cin>>x;
print(v[0][x]);
}
}
kiyoshi0205