結果
問題 | No.1069 電柱 / Pole (Hard) |
ユーザー | hitonanode |
提出日時 | 2020-05-30 00:45:00 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 765 ms / 2,000 ms |
コード長 | 9,223 bytes |
コンパイル時間 | 3,242 ms |
コンパイル使用メモリ | 242,692 KB |
実行使用メモリ | 9,440 KB |
最終ジャッジ日時 | 2024-07-23 15:07:41 |
合計ジャッジ時間 | 12,363 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 537 ms
8,216 KB |
testcase_05 | AC | 765 ms
8,132 KB |
testcase_06 | AC | 73 ms
5,376 KB |
testcase_07 | AC | 19 ms
5,376 KB |
testcase_08 | AC | 511 ms
6,932 KB |
testcase_09 | AC | 64 ms
5,376 KB |
testcase_10 | AC | 18 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 4 ms
6,944 KB |
testcase_13 | AC | 23 ms
6,944 KB |
testcase_14 | AC | 12 ms
6,940 KB |
testcase_15 | AC | 521 ms
9,440 KB |
testcase_16 | AC | 149 ms
6,944 KB |
testcase_17 | AC | 18 ms
6,944 KB |
testcase_18 | AC | 162 ms
6,940 KB |
testcase_19 | AC | 389 ms
6,940 KB |
testcase_20 | AC | 18 ms
6,944 KB |
testcase_21 | AC | 17 ms
6,940 KB |
testcase_22 | AC | 7 ms
6,944 KB |
testcase_23 | AC | 52 ms
6,944 KB |
testcase_24 | AC | 460 ms
6,944 KB |
testcase_25 | AC | 441 ms
6,944 KB |
testcase_26 | AC | 387 ms
6,944 KB |
testcase_27 | AC | 388 ms
6,940 KB |
testcase_28 | AC | 383 ms
6,944 KB |
testcase_29 | AC | 4 ms
6,940 KB |
testcase_30 | AC | 3 ms
6,940 KB |
testcase_31 | AC | 2 ms
6,940 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 2 ms
6,944 KB |
testcase_34 | AC | 2 ms
6,940 KB |
testcase_35 | AC | 2 ms
6,944 KB |
testcase_36 | AC | 2 ms
6,944 KB |
testcase_37 | AC | 58 ms
6,944 KB |
testcase_38 | AC | 9 ms
6,940 KB |
testcase_39 | AC | 3 ms
6,944 KB |
testcase_40 | AC | 71 ms
6,944 KB |
testcase_41 | AC | 48 ms
6,944 KB |
testcase_42 | AC | 78 ms
6,940 KB |
testcase_43 | AC | 5 ms
6,944 KB |
testcase_44 | AC | 53 ms
6,944 KB |
testcase_45 | AC | 32 ms
6,940 KB |
testcase_46 | AC | 216 ms
6,944 KB |
testcase_47 | AC | 129 ms
6,940 KB |
testcase_48 | AC | 125 ms
6,940 KB |
testcase_49 | AC | 33 ms
6,940 KB |
testcase_50 | AC | 3 ms
6,944 KB |
testcase_51 | AC | 223 ms
6,940 KB |
testcase_52 | AC | 3 ms
6,944 KB |
testcase_53 | AC | 42 ms
6,940 KB |
testcase_54 | AC | 2 ms
6,940 KB |
testcase_55 | AC | 3 ms
6,940 KB |
testcase_56 | AC | 2 ms
6,940 KB |
testcase_57 | AC | 4 ms
6,940 KB |
testcase_58 | AC | 2 ms
6,940 KB |
testcase_59 | AC | 4 ms
6,940 KB |
testcase_60 | AC | 2 ms
6,940 KB |
testcase_61 | AC | 8 ms
6,940 KB |
testcase_62 | AC | 2 ms
6,940 KB |
testcase_63 | AC | 2 ms
6,940 KB |
testcase_64 | AC | 4 ms
6,940 KB |
testcase_65 | AC | 2 ms
6,944 KB |
testcase_66 | AC | 3 ms
6,940 KB |
testcase_67 | AC | 2 ms
6,940 KB |
testcase_68 | AC | 2 ms
6,940 KB |
testcase_69 | AC | 11 ms
6,940 KB |
testcase_70 | AC | 4 ms
6,944 KB |
testcase_71 | AC | 8 ms
6,940 KB |
testcase_72 | AC | 5 ms
6,944 KB |
testcase_73 | AC | 11 ms
6,940 KB |
testcase_74 | AC | 12 ms
6,944 KB |
testcase_75 | AC | 12 ms
6,944 KB |
testcase_76 | AC | 69 ms
6,940 KB |
testcase_77 | AC | 69 ms
6,944 KB |
testcase_78 | AC | 8 ms
6,940 KB |
testcase_79 | AC | 20 ms
6,940 KB |
testcase_80 | AC | 49 ms
6,944 KB |
testcase_81 | AC | 65 ms
6,944 KB |
testcase_82 | AC | 17 ms
6,944 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using lint = long long int; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(6); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); } template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); } template<typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; } template<typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; } template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; } template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; } template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; } template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; } template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } #define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl; /* #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/tag_and_trait.hpp> using namespace __gnu_pbds; // find_by_order(), order_of_key() template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>; template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>; */ template<typename T> struct ShortestPath { int V, E; int INVALID = -1; std::vector<std::vector<std::pair<int, T>>> to; ShortestPath() = default; ShortestPath(int V) : V(V), E(0), to(V) {} void add_edge(int s, int t, T len) { assert(0 <= s and s < V); assert(0 <= t and t < V); to[s].emplace_back(t, len); E++; } std::vector<T> dist; std::vector<int> prev; // Dijkstra algorithm // Complexity: O(E log E) void Dijkstra(int s) { assert(0 <= s and s < V); dist.assign(V, 1e18); dist[s] = 0; prev.assign(V, INVALID); using P = std::pair<T, int>; std::priority_queue<P, std::vector<P>, std::greater<P>> pq; pq.emplace(0, s); while(!pq.empty()) { T d; int v; std::tie(d, v) = pq.top(); pq.pop(); if (dist[v] < d) continue; for (auto nx : to[v]) { T dnx = d + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; pq.emplace(dnx, nx.first); } } } } // Bellman-Ford algorithm // Complexity: O(VE) bool BellmanFord(int s, int nb_loop) { assert(0 <= s and s < V); dist.assign(V, std::numeric_limits<T>::max()); dist[s] = 0; prev.assign(V, INVALID); for (int l = 0; l < nb_loop; l++) { bool upd = false; for (int v = 0; v < V; v++) { if (dist[v] == std::numeric_limits<T>::max()) continue; for (auto nx : to[v]) { T dnx = dist[v] + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; upd = true; } } } if (!upd) return true; } return false; } // Warshall-Floyd algorithm // Complexity: O(E + V^3) std::vector<std::vector<T>> dist2d; void WarshallFloyd() { dist2d.assign(V, std::vector<T>(V, std::numeric_limits<T>::max())); for (int i = 0; i < V; i++) { dist2d[i][i] = 0; for (auto p : to[i]) dist2d[i][p.first] = min(dist2d[i][p.first], p.second); } for (int k = 0; k < V; k++) { for (int i = 0; i < V; i++) { if (dist2d[i][k] = std::numeric_limits<T>::max()) continue; for (int j = 0; j < V; j++) { if (dist2d[k][j] = std::numeric_limits<T>::max()) continue; dist2d[i][j] = min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]); } } } } }; using BS = bitset<4000>; int serial; struct P_ { double first; BS second; BS third; int id_; P_() = default; P_(double a, BS b, BS path) : first(a), second(b), third(path), id_(serial++) {} // bool operator<(const P_ &x) const { return first < x.first; } bool operator>(const P_ &x) const { if (first != x.first) return first > x.first; return id_ > x.id_; } }; int main() { int N, M, K; int X, Y; cin >> N >> M >> K >> X >> Y; X--, Y--; vector<lint> P(N), Q(N); REP(i, N) cin >> P[i] >> Q[i]; vector<double> e(M * 2); vector<int> from(M * 2), to(M * 2); ShortestPath<double> graph(N); map<pint, int> e2id; REP(i, M) { int s, t; cin >> s >> t; s--, t--; double dx = P[s] - P[t]; double dy = Q[s] - Q[t]; e[i] = e[i + M] = sqrt(dx * dx + dy * dy); from[i] = to[i + M] = s; from[i + M] = to[i] = t; graph.add_edge(s, t, e[i]); graph.add_edge(t, s, e[i]); e2id[pint(s, t)] = i; e2id[pint(t, s)] = i + M; } graph.Dijkstra(X); BS path; path.reset(); int now = Y; while (now != X) { int prv = graph.prev[now]; path[e2id[pint(prv, now)]] = 1; now = prv; } vector<BS> checked; priority_queue<P_, vector<P_>, greater<P_>> pq; vector<BS> alivebs; vector<BS> pathbs; vector<double> ret; BS state_; REP(i, M * 2) state_[i] = 1; checked.emplace_back(state_); alivebs.emplace_back(state_); pathbs.emplace_back(path); ret.emplace_back(graph.dist[Y]); while (ret.size() < K) { REP(eban, M * 2) if (pathbs.back()[eban]) { BS b = alivebs.back(); b[eban] = 0; ShortestPath<double> graph(N); REP(i, M * 2) if (b[i]) { graph.add_edge(from[i], to[i], e[i]); } graph.Dijkstra(X); if (graph.dist[Y] > 1e16) continue; BS path; int now = Y; while (now != X) { int prv = graph.prev[now]; path[e2id[pint(prv, now)]] = 1; now = prv; } pq.emplace(graph.dist[Y], b, path); } bool flg_conti = true; while (true) { if (pq.empty()) { flg_conti = false; break; } bool bad = false; for (auto x : pathbs) { if (x == pq.top().third) bad = true; } if (!bad) { ret.emplace_back(pq.top().first); } alivebs.emplace_back(pq.top().second); pathbs.emplace_back(pq.top().third); pq.pop(); break; } if (!flg_conti) break; } if (ret.size() < K) ret.resize(K, -1); REP(i, K) { if (ret[i] >= 0) cout << ret[i] << '\n'; else cout << -1 << '\n'; } }