結果

問題 No.1068 #いろいろな色 / Red and Blue and more various colors (Hard)
ユーザー hotman78hotman78
提出日時 2020-05-30 01:33:14
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,567 ms / 3,500 ms
コード長 13,548 bytes
コンパイル時間 6,882 ms
コンパイル使用メモリ 425,256 KB
実行使用メモリ 256,448 KB
最終ジャッジ日時 2024-11-14 22:38:03
合計ジャッジ時間 36,709 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 28 ms
7,296 KB
testcase_04 AC 21 ms
6,272 KB
testcase_05 AC 22 ms
6,400 KB
testcase_06 AC 17 ms
5,760 KB
testcase_07 AC 16 ms
5,632 KB
testcase_08 AC 21 ms
6,364 KB
testcase_09 AC 24 ms
6,720 KB
testcase_10 AC 11 ms
5,248 KB
testcase_11 AC 15 ms
5,632 KB
testcase_12 AC 9 ms
5,248 KB
testcase_13 AC 1,567 ms
256,448 KB
testcase_14 AC 1,548 ms
256,196 KB
testcase_15 AC 1,551 ms
256,324 KB
testcase_16 AC 1,547 ms
256,324 KB
testcase_17 AC 1,562 ms
256,304 KB
testcase_18 AC 1,548 ms
256,324 KB
testcase_19 AC 1,552 ms
256,324 KB
testcase_20 AC 1,556 ms
256,196 KB
testcase_21 AC 1,558 ms
256,320 KB
testcase_22 AC 1,555 ms
256,320 KB
testcase_23 AC 1,554 ms
256,196 KB
testcase_24 AC 1,553 ms
256,320 KB
testcase_25 AC 1,553 ms
256,316 KB
testcase_26 AC 1,545 ms
256,316 KB
testcase_27 AC 1,562 ms
256,320 KB
testcase_28 AC 1,554 ms
256,320 KB
testcase_29 AC 1,543 ms
256,320 KB
testcase_30 AC 1,548 ms
256,316 KB
testcase_31 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp:53:12: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
   53 | bool chmin(auto& s,const auto& t){bool res=s>t;s=min(s,t);return res;}
      |            ^~~~
main.cpp:53:26: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
   53 | bool chmin(auto& s,const auto& t){bool res=s>t;s=min(s,t);return res;}
      |                          ^~~~
main.cpp:54:12: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
   54 | bool chmax(auto& s,const auto& t){bool res=s<t;s=max(s,t);return res;}
      |            ^~~~
main.cpp:54:26: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
   54 | bool chmax(auto& s,const auto& t){bool res=s<t;s=max(s,t);return res;}
      |                          ^~~~

ソースコード

diff #

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC push_options
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx")
#include<bits/stdc++.h>
#include <xmmintrin.h>
#include <immintrin.h>
using namespace::std;
__attribute__((constructor))void init(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/priority_queue.hpp>
#include<ext/pb_ds/tag_and_trait.hpp>
// #include <boost/multiprecision/cpp_dec_float.hpp>
// #include <boost/multiprecision/cpp_int.hpp>
// namespace mp = boost::multiprecision;
// typedef mp::number<mp::cpp_dec_float<0>> cdouble;
// typedef mp::cpp_int cint;
template<typename T>using pbds=__gnu_pbds::tree<T,__gnu_pbds::null_type,less<T>,__gnu_pbds::rb_tree_tag,__gnu_pbds::tree_order_statistics_node_update>;
template<typename T>using pbds_map=__gnu_pbds::tree<T,T,less<T>,__gnu_pbds::rb_tree_tag,__gnu_pbds::tree_order_statistics_node_update>;
template<typename T,typename E>using hash_map=__gnu_pbds::gp_hash_table<T,E>;
template<typename T>using pqueue =__gnu_pbds::priority_queue<T, greater<T>,__gnu_pbds::rc_binomial_heap_tag>;
typedef long long lint;
#define INF (1LL<<60)
#define IINF (1<<30)
#define LINF (9223372036854775807LL)
#define EPS (1e-10)
#define endl ('\n')
//#define MOD 1000000007LL
#define MOD 998244353LL
typedef vector<lint> vec;
typedef vector<vector<lint>> mat;
typedef vector<vector<vector<lint>>> mat3;
typedef vector<string> svec;
typedef vector<vector<string>> smat;
template<typename T>inline void numout(T t){bool f=0;for(auto i:t){cout<<(f?" ":"")<<i<INF/2?i:"INF";f=1;}cout<<endl;}
template<typename T>inline void numout2(T t){for(auto i:t)numout(i);}
template<typename T>inline void output(T t){bool f=0;for(auto i:t){cout<<(f?" ":"")<<i;f=1;}cout<<endl;}
template<typename T>inline void output2(T t){for(auto i:t)output(i);}
template<typename T>inline void _output(T t){bool f=0;for(lint i=0;i<t.size();i++){cout<<f?"":" "<<t[i];f=1;}cout<<endl;}
template<typename T>inline void _output2(T t){for(lint i=0;i<t.size();i++)output(t[i]);}
#define rep(i,n) for(lint i=0;i<lint(n);++i)
#define repi(i,a,b) for(lint i=lint(a);i<(lint)(b);++i)
#define rrep(i,n) for(lint i=lint(n)-1;i>=0;--i)
#define rrepi(i,a,b) for(lint i=lint(b)-1;i>=lint(a);--i)
#define irep(i) for(lint i=0;;++i)
#define all(n) begin(n),end(n)
#define dist(a,b,c,d) sqrt(pow(a-c,2)+pow(b-d,2))
inline lint gcd(lint A,lint B){return B?gcd(B,A%B):A;}
inline lint lcm(lint A,lint B){return A/gcd(A,B)*B;}
// inline cint cgcd(cint A,cint B){return B?cgcd(B,A%B):A;}
// inline cint clcm(cint A,cint B){return A/cgcd(A,B)*B;}
bool chmin(auto& s,const auto& t){bool res=s>t;s=min(s,t);return res;}
bool chmax(auto& s,const auto& t){bool res=s<t;s=max(s,t);return res;}
const vector<lint> dx={1,0,-1,0,1,1,-1,-1};
const vector<lint> dy={0,1,0,-1,1,-1,1,-1};
#define SUM(v) accumulate(all(v),0LL)
auto call=[](auto f,auto... args){return f(f,args...);};

template<typename T,typename P>
struct FPS_BASE:vector<T>{
    using vector<T>::vector;
    inline P operator +(T x)noexcept{return P(*static_cast<P*>(this))+=x;}
    inline P operator -(T x)noexcept{return P(*static_cast<P*>(this))-=x;}
    inline P operator *(T x)noexcept{return P(*static_cast<P*>(this))*=x;}
    inline P operator /(T x)noexcept{return P(*static_cast<P*>(this))/=x;}
    inline P operator <<(int x)noexcept{return P(*static_cast<P*>(this))<<=x;}
    inline P operator >>(int x)noexcept{return P(*static_cast<P*>(this))>>=x;}
    inline P operator +(const P& x)noexcept{return P(*static_cast<P*>(this))+=x;}
    inline P operator -(const P& x)noexcept{return P(*static_cast<P*>(this))-=x;}
    inline P operator -()noexcept{return P(1,T(0))-=P(*static_cast<P*>(this));}
    inline P operator *(const P& x)noexcept{return P(*static_cast<P*>(this))*=x;}
    inline P operator /(const P& x)noexcept{return P(*static_cast<P*>(this))/=x;}
    inline P operator %(const P& x)noexcept{return P(*static_cast<P*>(this))%=x;}
    inline P &operator +=(T x){
        if(this->size()==0)this->resize(1,T(0));
        (*static_cast<P*>(this))[0]+=x;
        return (*static_cast<P*>(this));
    }
    inline P &operator -=(T x){
        if(this->size()==0)this->resize(1,T(0));
        (*static_cast<P*>(this))[0]-=x;
        return (*static_cast<P*>(this));
    }
    inline P &operator *=(T x){
        for(int i=0;i<(int)this->size();++i){
            (*static_cast<P*>(this))[i]*=x;
        }
        return (*static_cast<P*>(this));
    }
    inline P &operator /=(T x){
        return (*static_cast<P*>(this))*=(T(1)/x);
    }
    inline P &operator <<=(int x){
        P ret(x,T(0));
        ret.insert(ret.end(),begin(*static_cast<P*>(this)),end(*static_cast<P*>(this)));
        return (*static_cast<P*>(this))=ret;
    }
    inline P &operator >>=(int x){
        P ret;
        ret.insert(ret.end(),begin(*static_cast<P*>(this))+x,end(*static_cast<P*>(this)));
        return (*static_cast<P*>(this))=ret;
    }
    inline P &operator +=(const P& x){
        if(this->size()<x.size())this->resize(x.size(),T(0));
        for(int i=0;i<(int)x.size();++i){
            (*this)[i]+=x[i];
        }
        return (*static_cast<P*>(this));
    }
    inline P &operator -=(const P& x){
        if(this->size()<x.size())this->resize(x.size(),T(0));
        for(int i=0;i<(int)x.size();++i){
            (*static_cast<P*>(this))[i]-=x[i];
        }
        return (*static_cast<P*>(this));
    }
    inline P &operator *=(const P& x){
        return (*static_cast<P*>(this))=mul((*static_cast<P*>(this)),x);
    }
    inline P &operator /=(P x){
        if(this->size()<x.size()) {
            this->clear();
            return (*static_cast<P*>(this));
        }
        const int n=this->size()-x.size()+1;
        return (*static_cast<P*>(this)) = (rev().pre(n)*x.rev().inv(n)).pre(n).rev(n);
    }
    inline P &operator %=(const P& x){
        return ((*static_cast<P*>(this))-=*static_cast<P*>(this)/x*x);
    }
    inline P& shrink(){while((*static_cast<P*>(this)).back()==0)(*static_cast<P*>(this)).pop_back();return (*static_cast<P*>(this));}
    inline P pre(int sz)const{
        return P(begin(*this),begin(*this)+min((int)this->size(),sz));
    }
    inline P rev(int deg=-1){
        P ret(*static_cast<P*>(this));
        if(deg!=-1)ret.resize(deg,T(0));
        reverse(begin(ret),end(ret));
        return ret;
    }
    P inv(int deg=-1){
        assert((*static_cast<P*>(this))[0]!=T(0));
        const int n=deg==-1?this->size():deg;
        P ret({T(1)/(*this)[0]});
        for(int i=1;i<n;i<<=1){
            ret=(ret*T(2)-ret*ret*pre(i<<1)).pre(i<<1);
        }
        return ret.pre(n);
    }
    inline P dot(const P& x){
        P ret(*static_cast<P*>(this));
        for(int i=0;i<int(min(this->size(),x.size()));++i){
            ret[i]*=x[i];
        }
        return ret;
    }
    P diff(){
        P ret(*static_cast<P*>(this));
        for(int i=0;i<(int)ret.size();i++){
            ret[i]*=i;
        }
        return ret>>1;
    }
    P integral(){
        P ret(*static_cast<P*>(this));
        for(int i=0;i<(int)ret.size();i++){
            ret[i]/=i+1;
        }
        return ret<<1;
    }
    P log(int deg=-1){
        assert((*this)[0]==T(1));
        const int n=deg==-1?this->size():deg;
        return (diff()*inv(n)).pre(n-1).integral();
    }
    P exp(int deg=-1){
        assert((*this)[0]==T(0));
        const int n=deg==-1?this->size():deg;
        P ret({T(1)});
        for(int i=1;i<n;i<<=1){
            ret=ret*(pre(i<<1)+1-ret.log(i<<1)).pre(i<<1);
        }
        return ret.pre(n);
    }
    P sqrt(int deg=-1){
        const int n=deg==-1?this->size():deg;
        if((*this)[0]==T(0)) {
            for(int i=1;i<(int)this->size();i++) {
                if((*this)[i]!=T(0)) {
                    if(i&1)return{};
                    if(n-i/2<=0)break;
                    auto ret=(*this>>i).sqrt(n-i/2)<<(i/2);
                    if((int)ret.size()<n)ret.resize(n,T(0));
                    return ret;
                }
            }
            return P(n,0);
        }
        P ret({T(1)});
        for(int i=1;i<n;i<<=1){
            ret=(ret+pre(i<<1)*ret.inv(i<<1)).pre(i<<1)/T(2);
        }
        return ret.pre(n);
    }
    T eval(T x){
        T res=0;
        for(int i=(int)this->size()-1;i>=0;--i){
            res*=x;
            res+=(*this)[i];
        }
        return res;
    }
    vector<T> multipoint_eval(const vector<T>&x){
        const int n=x.size();
        P* v=new P[2*n-1];
        for(int i=0;i<n;i++)v[i+n-1]={T()-x[i],T(1)};
        for(int i=n-2;i>=0;i--){v[i]=v[i*2+1]*v[i*2+2];}
        v[0]=P(*static_cast<P*>(this))%v[0];v[0].shrink();
        for(int i=1;i<n*2-1;i++){
            v[i]=v[(i-1)/2]%v[i];
            v[i].shrink();
        }
        vector<T>res(n);
        for(int i=0;i<n;i++)res[i]=v[i+n-1][0];
        return res;
    }
    virtual P mul(P s,P t)=0;
};


template<typename Mint>
struct fps9:FPS_BASE<Mint,fps9<Mint>>{
    using FPS_BASE<Mint,fps9<Mint>>::FPS_BASE;
    using P=fps9<Mint>;
    P mul(P s,P t)override{
        const int n=s.size()+t.size()-1;
        int h=1;
        while((1<<h)<n)h++;
        s.resize((1<<h),Mint(0));
        t.resize((1<<h),Mint(0));
        return ntt(ntt(s,h,0).dot(ntt(t,h,0)),h,1).pre(n).shrink();
    }
    P ntt(P v,const int& h,const bool& inv){
		const int n=v.size(),mask=n-1;
        assert(Mint::get_mod()>=3&&Mint::get_mod()%2==1);
		P tmp(n);
        Mint* table=new Mint[n];table[0]=1;
        Mint theta=Mint(Mint::root()).pow((Mint::get_mod()-1)>>h);
        if(inv)theta=theta.inv();
        for(int i=1;i<n;++i)table[i]=table[i-1]*theta;
        for(int j=n>>1,t=h-1;j>=1;j>>=1,--t){
            for(int k=0;k<n;++k){
                const int s=k&(j-1);
                const int i=k>>t;
                tmp[k]=v[((i<<(t+1))|s)&mask]+table[i*j]*v[((i<<(t+1))|j|s)&mask];
            }
            v.swap(tmp);
        }
        if(inv)v/=n;
        return v;
	}
};

class mint {
  using u64 = std::uint_fast64_t;
    public:
    u64 a;
    constexpr mint(const long long x = 0)noexcept:a(x>=0?x%get_mod():get_mod()-(-x)%get_mod()){}
    constexpr u64 &value()noexcept{return a;}
    constexpr const u64 &value() const noexcept {return a;}
    constexpr mint operator+(const mint rhs)const noexcept{return mint(*this) += rhs;}
    constexpr mint operator-(const mint rhs)const noexcept{return mint(*this)-=rhs;}
    constexpr mint operator*(const mint rhs) const noexcept {return mint(*this) *= rhs;}
    constexpr mint operator/(const mint rhs) const noexcept {return mint(*this) /= rhs;}
    constexpr mint &operator+=(const mint rhs) noexcept {
        a += rhs.a;
        if (a >= get_mod())a -= get_mod();
        return *this;
    }
    constexpr mint &operator-=(const mint rhs) noexcept {
        if (a<rhs.a)a += get_mod();
        a -= rhs.a;
        return *this;
    }
    constexpr mint &operator*=(const mint rhs) noexcept {
        a = a * rhs.a % get_mod();
        return *this;
    }
    constexpr mint operator++(int n) noexcept {
        a += 1;
        if (a >= get_mod())a -= get_mod();
        return *this;
    }
    constexpr mint operator--(int n) noexcept {
        if (a<1)a += get_mod();
        a -= 1;
        return *this;
    }
    constexpr mint &operator/=(mint rhs) noexcept {
        u64 exp=get_mod()-2;
        while (exp) {
            if (exp % 2) {
                *this *= rhs;
            }
            rhs *= rhs;
            exp /= 2;
        }
        return *this;
    }
    constexpr bool operator==(mint x) noexcept {
        return a==x.a;
    }
    constexpr bool operator!=(mint x) noexcept {
        return a!=x.a;
    }
    constexpr static int root(){
        mint root = 2;
        while(root.pow((get_mod()-1)>>1).a==1)root++;
        return root.a;
    }
    constexpr mint pow(long long n){
        long long x=a;
        mint ret = 1;
        while(n>0) {
            if(n&1)(ret*=x);
            (x*=x)%=get_mod();
            n>>=1;
        }
        return ret;
    }
    constexpr mint inv(){
        return pow(get_mod()-2);
    }
    static vector<mint> fac,ifac;
    static bool init;
    constexpr static int mx=10000001;
    void build(){
        init=0;
        fac.resize(mx);
        ifac.resize(mx);
        fac[0]=1,ifac[0]=1;
        for(int i=1;i<mx;i++)fac[i]=fac[i-1]*i;
        ifac[mx-1]=fac[mx-1].inv();
        for(int i=mx-2;i>=0;i--)ifac[i]=ifac[i+1]*(i+1);
    }
    mint comb(lint b){
        if(init)build();
        if(a==0&&b==0)return 1;
        if((lint)a<b||a<0)return 0;
        return fac[a]*ifac[a-b]*ifac[b];
    }
    mint fact(){
        if(init)build();
        return fac[a];
    }
    mint fact_inv(){
        if(init)build();
        return ifac[a];
    }
    friend ostream& operator<<(ostream& lhs, const mint& rhs) noexcept {
        lhs << rhs.a;
        return lhs;
    }
    friend istream& operator>>(istream& lhs,mint& rhs) noexcept {
        lhs >> rhs.a;
        return lhs;
    }
    constexpr static u64 get_mod(){return MOD;}
};
vector<mint> mint::fac;
vector<mint> mint::ifac;
bool mint::init=1;

int main(){
    lint n,q;
    cin>>n>>q;
    vec a(n);
    rep(i,n)cin>>a[i];
    vector<fps9<mint>>f(2*n-1);
    rep(i,n){
        f[n-1+i]=fps9<mint>{a[i]-1,1};
    }
    rrep(i,n-1){
        f[i]=f[i*2+1]*f[i*2+2];
    }
    rep(i,q){
        lint x;
        cin>>x;
        cout<<f[0][x]<<endl;
    }
}
0