結果
| 問題 |
No.1068 #いろいろな色 / Red and Blue and more various colors (Hard)
|
| コンテスト | |
| ユーザー |
kcvlex
|
| 提出日時 | 2020-05-31 01:40:10 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 14,195 bytes |
| コンパイル時間 | 2,613 ms |
| コンパイル使用メモリ | 163,300 KB |
| 最終ジャッジ日時 | 2025-01-10 19:48:43 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 28 WA * 1 |
ソースコード
#define CPP17
#include <limits>
#include <initializer_list>
#include <utility>
#include <bitset>
#include <tuple>
#include <type_traits>
#include <functional>
#include <string>
#include <array>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <iterator>
#include <algorithm>
#include <complex>
#include <random>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <regex>
#include <cassert>
#include <cstddef>
#ifdef CPP17
#include <variant>
#endif
// Yay!!
#define endl codeforces
// macros for iterator
#define ALL(v) std::begin(v), std::end(v)
#define ALLR(v) std::rbegin(v), std::rend(v)
// alias
using ll = std::int64_t;
using ull = std::uint64_t;
using pii = std::pair<int, int>;
using tii = std::tuple<int, int, int>;
using pll = std::pair<ll, ll>;
using tll = std::tuple<ll, ll, ll>;
template <typename T> using vec = std::vector<T>;
template <typename T> using vvec = vec<vec<T>>;
// variadic min/max
template <typename T> const T& var_min(const T &t) { return t; }
template <typename T> const T& var_max(const T &t) { return t; }
template <typename T, typename... Tail> const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); }
template <typename T, typename... Tail> const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); }
// variadic chmin/chmax
template <typename T, typename... Tail> void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); }
template <typename T, typename... Tail> void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); }
// multi demension array
template <typename T, std::size_t Head, std::size_t... Tail> struct multi_dim_array { using type = std::array<typename multi_dim_array<T, Tail...>::type, Head>; };
template <typename T, std::size_t Head> struct multi_dim_array<T, Head> { using type = std::array<T, Head>; };
template <typename T, std::size_t... Args> using mdarray = typename multi_dim_array<T, Args...>::type;
#ifdef CPP17
// fill container
template <typename T, typename F, typename... Args>
void fill_seq(T &t, F f, Args... args) { if constexpr (std::is_invocable<F, Args...>::value) { t = f(args...); } else { for (ssize_t i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i); } }
#endif
// make multi dimension vector
template <typename T> vec<T> make_v(ssize_t sz) { return vec<T>(sz); }
template <typename T, typename... Tail> auto make_v(ssize_t hs, Tail&&... ts) { auto v = std::move(make_v<T>(std::forward<Tail>(ts)...)); return vec<decltype(v)>(hs, v); }
// init
namespace init__ {
struct InitIO { InitIO() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(30); } } init_io;
}
namespace math {
template <typename T>
constexpr T pow(const T &n, ll k) {
T ret = n.mul_id_ele();
T cur = n;
while (k) {
if (k & 1) ret *= cur;
cur *= cur;
k /= 2;
}
return ret;
}
}
namespace math {
template <ll Mod>
struct Modint {
constexpr Modint(ll x) noexcept : x((Mod + x % Mod) % Mod) { }
constexpr Modint() noexcept : Modint(0) { }
constexpr Modint<Mod> add_id_ele() const noexcept {
return Modint<Mod>(0);
}
constexpr Modint<Mod> mul_id_ele() const noexcept {
return Modint<Mod>(1);
}
constexpr ll& value() noexcept {
return x;
}
constexpr ll value() const noexcept {
return x;
}
constexpr Modint& operator +=(const Modint &oth) noexcept {
x += oth.value();
if (Mod <= x) x -= Mod;
return *this;
}
constexpr Modint& operator -=(const Modint &oth) noexcept {
x += Mod - oth.value();
if (Mod <= x) x -= Mod;
return *this;
}
constexpr Modint& operator *=(const Modint &oth) noexcept {
x *= oth.value();
x %= Mod;
return *this;
}
constexpr Modint& operator /=(const Modint &oth) noexcept {
x *= oth.inv().value();
x %= Mod;
return *this;
}
constexpr Modint operator +(const Modint &oth) const noexcept {
return Modint(x) += oth;
}
constexpr Modint operator -(const Modint &oth) const noexcept {
return Modint(x) -= oth;
}
constexpr Modint operator *(const Modint &oth) const noexcept {
return Modint(x) *= oth;
}
constexpr Modint operator /(const Modint &oth) const noexcept {
return Modint(x) /= oth;
}
constexpr Modint operator -() const noexcept {
return Modint((x != 0) * (Mod - x));
}
template <typename T>
constexpr typename std::enable_if<std::is_integral<T>::value, const Modint&>::type
operator =(T t) noexcept {
(*this) = Modint(std::forward<T>(t));
return *this;
}
constexpr Modint inv() const noexcept {
return ::math::pow(*this, Mod - 2);
}
constexpr ll mod() const noexcept {
return Mod;
}
private:
ll x;
};
}
ssize_t ceil_pow2(ssize_t s) {
ssize_t ret = 1;
while (ret < s) ret *= 2;
return ret;
}
namespace utility {
template <typename T, T... Args>
constexpr std::array<T, sizeof...(Args)>
make_array(std::integer_sequence<T, Args...>) {
return {{ Args... }};
}
template <typename, typename>
struct tuple_concat;
template <typename... Args1, typename... Args2>
struct tuple_concat<std::tuple<Args1...>, std::tuple<Args2...>> {
using type = std::tuple<Args1..., Args2...>;
};
template <ll... N1, ll... N2>
constexpr auto concat_integer_sequence(std::integer_sequence<ll, N1...>, std::integer_sequence<ll, N2...>) {
return std::integer_sequence<ll, N1..., N2...>();
}
template <ll Head, ll... Tail>
struct reverse_sequence {
using head_type = std::integer_sequence<ll, Head>;
using tail_type = typename reverse_sequence<Tail...>::type;
using type = decltype(concat_integer_sequence(std::declval<tail_type>(), std::declval<head_type>()));
};
template <ll Head>
struct reverse_sequence<Head> {
using type = std::integer_sequence<ll, Head>;
};
template <ll... N>
constexpr auto reverse_ns(std::integer_sequence<ll, N...>) {
return typename reverse_sequence<N...>::type();
}
}
namespace math {
namespace ntt_helper {
class reverse_bit {
vvec<ll> bits;
// len = 2^n
void build_rev_bit(std::size_t len, vec<ll> &v) {
if (!v.empty()) return;
uint64_t r = 0, s = 0, max_v = len;
v.resize(len);
for (auto &&ele : v) {
// assert(r < max_v * 2);
ele = s;
r += 2;
s ^= max_v - (max_v / (r & -r));
}
// assert(max_v * 2 <= r);
}
ll get_idx(std::size_t pow2) {
ll i;
for (i = 0; i < 64; i++) if (pow2 & (1ll << i)) break;
return i;
}
void resize(ll idx) {
if (bits.size() <= idx) bits.resize(idx + 1);
}
public:
const vec<ll>& get(std::size_t len) {
const auto idx = get_idx(len);
resize(idx);
build_rev_bit(len, bits[idx]);
return bits[idx];
}
};
reverse_bit rb__;
template <ll Mod>
constexpr bool is_primitive_root(ll r) {
Modint<Mod> mr(r);
for (ll d = 2; d * d <= Mod; d++) {
if ((Mod - 1) % d == 0) {
if (pow(mr, d).value() == 1) return false;
if (pow(mr, (Mod - 1) / d).value() == 1) return false;
}
}
return true;
}
template <ll Mod>
constexpr ll find_primitive_root(ll r) {
return (is_primitive_root<Mod>(r) ? r : find_primitive_root<Mod>(r + 1));
}
template <ll Mod>
constexpr ll find_primitive_root() {
return find_primitive_root<Mod>(2);
}
template <ll Mod, ll Root, std::size_t Size>
struct root_pows_calculator {
using mint = Modint<Mod>;
using seq = std::make_integer_sequence<ll, Size>;
using rseq = decltype(utility::reverse_ns(std::declval<seq>()));
struct aux {
mint m;
ll k;
constexpr aux(mint m, ll k) : m(m), k(k) { }
constexpr mint solve() {
return pow(m, 1ll << k);
}
};
constexpr static mint root = mint(Root);
constexpr mint apply(ll k) {
return aux(root, k).solve();
}
template <ll... K>
constexpr auto calc(std::integer_sequence<ll, K...>) -> std::array<mint, Size> {
return {{ apply(K)... }};
}
constexpr auto calc() {
return calc(rseq());
}
};
template <ll Mod, ll Root, std::size_t Size>
constexpr auto calc_root_pows() {
return root_pows_calculator<Mod, Root, Size>().calc();
}
} // anonymous
template <ll Mod, ll PrimitiveRoot, std::size_t MaxSizeLog>
class ntt__ {
static constexpr ssize_t max_size = 1ll << MaxSizeLog;
static constexpr ssize_t max_conv_size = max_size * 2;
public:
using mint = Modint<Mod>;
using poly = std::array<mint, max_conv_size>;
constexpr ntt__() { }
template <typename InputIterator1, typename InputIterator2, typename OutputIterator>
void convolution(const InputIterator1 a_begin, const InputIterator1 a_end,
const InputIterator2 b_begin, const InputIterator2 b_end,
OutputIterator out)
{
auto asz = std::distance(a_begin, a_end);
auto bsz = std::distance(b_begin, b_end);
auto lower_size = asz + bsz - 1;
auto conv_size = ceil_pow2(lower_size);
decltype(auto) rev_bit = ntt_helper::rb__.get(conv_size);
ntt(a_begin, a_end, false, rev_bit, ntt_a.begin());
ntt(b_begin, b_end, false, rev_bit);
for (ll i = 0; i < conv_size; i++) ntt_a[i] *= buf[i];
ntt(ntt_a.begin(), ntt_a.begin() + conv_size, true, rev_bit, out);
}
template <typename InputIterator1, typename InputIterator2>
const poly& convolution(const InputIterator1 a_begin, const InputIterator1 a_end,
const InputIterator2 b_begin, const InputIterator2 b_end)
{
convolution(a_begin, a_end, b_begin, b_end, buf.begin());
return buf;
}
private:
using pows_type = std::array<mint, MaxSizeLog>;
constexpr static ll root_max_pow = pow(mint(PrimitiveRoot), (Mod - 1) / (1ll << MaxSizeLog)).value();
constexpr static ll root_max_inv = mint(root_max_pow).inv().value();
constexpr static pows_type root_pow_lis = ntt_helper::calc_root_pows<Mod, root_max_pow, MaxSizeLog>();
constexpr static pows_type root_inv_lis = ntt_helper::calc_root_pows<Mod, root_max_inv, MaxSizeLog>();
poly buf, ntt_a;
template <typename Iterator>
const poly& ntt(const Iterator begin, const Iterator end,
bool inverse, const vec<ll> &rev_bit)
{
const auto len = rev_bit.size();
{
ssize_t arr_idx = 0;
auto sz = std::distance(begin, end);
for (auto &&idx : rev_bit) {
buf[idx] = (arr_idx < sz ? *(begin + arr_idx) : 0);
arr_idx++;
}
}
ssize_t unit_size = 2;
ssize_t root_pow_idx = 0;
const auto &root_lis = (inverse ? root_inv_lis : root_pow_lis);
while (unit_size <= len) {
mint root = root_lis[root_pow_idx];
mint root_pow = 1;
auto unit_cnt = len / unit_size;
for (ll offset = 0; offset < unit_size / 2; offset++) {
for (ll unit_counter = 0; unit_counter < unit_cnt; unit_counter++) {
auto i = unit_counter * unit_size + offset;
auto j = i + unit_size / 2;
auto cur_val_i = buf[i], cur_val_j = buf[j];
cur_val_j *= root_pow;
buf[i] = cur_val_i + cur_val_j;
buf[j] = cur_val_i - cur_val_j;
}
root_pow *= root;
}
unit_size *= 2;
root_pow_idx++;
}
if (inverse) {
auto inv_len = mint(len).inv();
for (ssize_t i = 0; i < rev_bit.size(); i++) buf[i] *= inv_len;
}
return buf;
}
template <typename InputIterator, typename OutputIterator>
const void ntt(const InputIterator begin, const InputIterator end,
bool inverse, const vec<ll> &rev_bit, OutputIterator out)
{
ntt(begin, end, inverse, rev_bit);
auto len = rev_bit.size();
bool copy = true;
if constexpr (std::is_same<OutputIterator, typename decltype(buf)::iterator>::value) {
if (out == buf.begin()) copy = false;
} else {
}
if (copy) std::copy(buf.cbegin(), buf.cbegin() + len, out);
}
};
template <ll Mod, std::size_t MaxSizeLog>
using NTT = ntt__<Mod, ntt_helper::find_primitive_root<Mod>(), MaxSizeLog>;
}
constexpr ll mod = 998244353;
using mint = math::Modint<mod>;
struct Solver {
math::NTT<mod, 20> ntt;
ll n, q;
vec<mint> v1, buf;
vec<ll> av, bv;
Solver(ll n, ll q) : n(n), q(q), v1(4 * n), buf(4 * n), av(n), bv(q) {
for (ll &e : av) std::cin >> e;
for (ll &e : bv) std::cin >> e;
}
void calc(ll l, ll r) {
if (r - l == 1) {
v1[2 * l] = av[l] - 1;
v1[2 * l + 1] = 1;
return;
} else if (r - l == 0) {
v1[2 * l] = 1;
return;
}
ll m = (l + r) / 2;
calc(l, m);
calc(m, r);
auto sz1 = std::max<ll>(1, m - l), sz2 = std::max<ll>(1, r - m);
assert(0<=m-l&&0<=r-m);
assert(2*(l+sz1+sz2)<=buf.size());
ntt.convolution(v1.begin() + 2 * l, v1.begin() + 2 * (l + sz1),
v1.begin() + 2 * (l + sz1), v1.begin() + 2 * (l + sz1 + sz2),
buf.begin() + 2 * l);
std::copy(buf.begin() + 2 * l, buf.begin() + 2 * (l + sz1 + sz2), v1.begin() + 2 * l);
}
void solve() {
calc(0, n);
for (ll e : bv) {
std::cout << buf[e].value() << "\n";
}
}
};
int main() {
ll n, q;
std::cin >> n >> q;
Solver solver(n, q);
solver.solve();
return 0;
}
kcvlex