結果
| 問題 |
No.1068 #いろいろな色 / Red and Blue and more various colors (Hard)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-06-04 06:30:32 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 678 ms / 3,500 ms |
| コード長 | 5,552 bytes |
| コンパイル時間 | 1,912 ms |
| コンパイル使用メモリ | 135,144 KB |
| 最終ジャッジ日時 | 2025-01-10 21:00:44 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 29 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:216:20: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
216 | ll q; scanf("%lld %lld", &n, &q);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~
main.cpp:217:55: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
217 | a.resize(n); for (int i = 0; i < n; i++) scanf("%lld", &a[i]);
| ~~~~~^~~~~~~~~~~~~~~
main.cpp:218:51: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
218 | b.resize(q); for (int i = 0; i < q; i++) scanf("%lld", &b[i]);
| ~~~~~^~~~~~~~~~~~~~~
ソースコード
#include <cstdio>
#include <iostream>
#include <string>
#include <sstream>
#include <stack>
#include <algorithm>
#include <cmath>
#include <queue>
#include <map>
#include <set>
#include <cstdlib>
#include <bitset>
#include <tuple>
#include <assert.h>
#include <deque>
#include <bitset>
#include <iomanip>
#include <limits>
#include <chrono>
#include <random>
#include <array>
#include <unordered_map>
#include <functional>
#include <complex>
#include <numeric>
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
constexpr long long MAX = 5100000;
constexpr long long INF = 1LL << 60;
constexpr int inf = 1000000007;
//constexpr long long mod = 1000000007LL;
constexpr long long mod = 998244353LL;
const long double PI = acos((long double)(-1));
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
struct mint {
long long x;
mint(long long x = 0) :x((x% mod + mod) % mod) {}
mint& operator+=(const mint a) {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint a) {
if ((x += mod - a.x) >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint a) {
(x *= a.x) %= mod;
return *this;
}
mint operator+(const mint a) const {
mint res(*this);
return res += a;
}
mint operator-(const mint a) const {
mint res(*this);
return res -= a;
}
mint operator*(const mint a) const {
mint res(*this);
return res *= a;
}
mint pow(ll t) const {
if (!t) return 1;
mint a = pow(t >> 1);
a *= a;
if (t & 1) a *= *this;
return a;
}
// for prime mod
mint inv() const {
return pow(mod - 2);
}
mint& operator/=(const mint a) {
return (*this) *= a.inv();
}
mint operator/(const mint a) const {
mint res(*this);
return res /= a;
}
};
template< int mod >
struct NumberTheoreticTransform {
vector< int > rev, rts;
int base, max_base, root;
NumberTheoreticTransform() : base(1), rev{ 0, 1 }, rts{ 0, 1 } {
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while (tmp % 2 == 0) tmp >>= 1, max_base++;
root = 2;
while (mod_pow(root, (mod - 1) >> 1) == 1) ++root;
assert(mod_pow(root, mod - 1) == 1);
root = mod_pow(root, (mod - 1) >> max_base);
}
inline int mod_pow(int x, int n) {
int ret = 1;
while (n > 0) {
if (n & 1) ret = mul(ret, x);
x = mul(x, x);
n >>= 1;
}
return ret;
}
inline int inverse(int x) {
return mod_pow(x, mod - 2);
}
inline unsigned add(unsigned x, unsigned y) {
x += y;
if (x >= mod) x -= mod;
return x;
}
inline unsigned mul(unsigned a, unsigned b) {
return 1ull * a * b % (unsigned long long) mod;
}
void ensure_base(int nbase) {
if (nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for (int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
assert(nbase <= max_base);
while (base < nbase) {
int z = mod_pow(root, 1 << (max_base - 1 - base));
for (int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
rts[(i << 1) + 1] = mul(rts[i], z);
}
++base;
}
}
void ntt(vector< ll >& a) {
const int n = (int)a.size();
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for (int i = 0; i < n; i++) {
if (i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for (int k = 1; k < n; k <<= 1) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; j++) {
int z = mul(a[i + j + k], rts[j + k]);
a[i + j + k] = add(a[i + j], mod - z);
a[i + j] = add(a[i + j], z);
}
}
}
}
vector< ll > multiply(vector< ll > a, vector< ll > b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while ((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
int inv_sz = inverse(sz);
for (int i = 0; i < sz; i++) {
a[i] = mul(a[i], mul(b[i], inv_sz));
}
reverse(a.begin() + 1, a.end());
ntt(a);
a.resize(need);
return a;
}
};
ll n;
vector<ll> a, b;
vector<ll> dfs(int left, int right) {
if (left >= right) return vector<ll>();
if (right - left == 1) {
vector<ll> res(2);
res[0] = (a[left] - 1) % mod;
if (res[0] < 0) res[0] += mod;
res[1] = 1;
return res;
}
ll mid = (left + right) >> 1;
auto l = dfs(left, mid);
auto r = dfs(mid, right);
NumberTheoreticTransform<mod> ntt;
return ntt.multiply(l, r);
}
int main()
{
/*
cin.tie(nullptr);
ios::sync_with_stdio(false);
*/
ll q; scanf("%lld %lld", &n, &q);
a.resize(n); for (int i = 0; i < n; i++) scanf("%lld", &a[i]);
b.resize(q); for (int i = 0; i < q; i++) scanf("%lld", &b[i]);
auto res = dfs(0, n);
for (int i = 0; i < q; i++) {
cout << res[b[i]] << "\n";
}
return 0;
}