結果
| 問題 |
No.1074 増殖
|
| コンテスト | |
| ユーザー |
masayoshi361
|
| 提出日時 | 2020-06-05 22:57:24 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 478 ms / 2,000 ms |
| コード長 | 11,191 bytes |
| コンパイル時間 | 2,496 ms |
| コンパイル使用メモリ | 192,404 KB |
| 実行使用メモリ | 9,472 KB |
| 最終ジャッジ日時 | 2024-12-17 17:19:06 |
| 合計ジャッジ時間 | 5,741 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 12 |
ソースコード
//header
#ifdef LOCAL
#include "cxx-prettyprint-master/prettyprint.hpp"
#define debug(x) cout << x << endl
#else
#define debug(...) 42
#endif
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
//types
using namespace std;
using ll = long long;
using ul = unsigned long long;
using ld = long double;
typedef pair < ll , ll > Pl;
typedef pair < int, int > Pi;
typedef vector<ll> vl;
typedef vector<int> vi;
template< typename T >
using mat = vector< vector< T > >;
template< int mod >
struct modint {
int x;
modint() : x(0) {}
modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
modint &operator+=(const modint &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
modint &operator-=(const modint &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
modint &operator*=(const modint &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint(-x); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return x == p.x; }
bool operator!=(const modint &p) const { return x != p.x; }
modint inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return modint(u);
}
modint pow(int64_t n) const {
modint ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const modint &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, modint &a) {
int64_t t;
is >> t;
a = modint< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
//abreviations
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define rep_(i, a_, b_, a, b, ...) for (int i = (a), max_i = (b); i < max_i; i++)
#define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define rrep_(i, a_, b_, a, b, ...) for (int i = (b-1), min_i = (a); i >= min_i; i--)
#define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define SZ(x) ((int)(x).size())
#define pb(x) push_back(x)
#define eb(x) emplace_back(x)
#define mp make_pair
#define print(x) cout << x << endl
#define vsum(x) accumulate(x, 0LL)
#define vmax(a) *max_element(all(a))
#define vmin(a) *min_element(all(a))
//functions
ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; }
ll lcm(ll a, ll b) { return a/gcd(a, b)*b;}
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
template< typename T >
T mypow(T x, ll n) {
T ret = 1;
while(n > 0) {
if(n & 1) (ret *= x);
(x *= x);
n >>= 1;
}
return ret;
}
ll modpow(ll x, ll n, const ll mod) {
ll ret = 1;
while(n > 0) {
if(n & 1) (ret *= x);
(x *= x);
n >>= 1;
x%=mod;
ret%=mod;
}
return ret;
}
uint64_t my_rand(void) {
static uint64_t x = 88172645463325252ULL;
x = x ^ (x << 13); x = x ^ (x >> 7);
return x = x ^ (x << 17);
}
//graph template
template< typename T >
struct edge {
int src, to;
T cost;
edge(int to, T cost) : src(-1), to(to), cost(cost) {}
edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
};
template< typename T >
using Edges = vector< edge< T > >;
template< typename T >
using WeightedGraph = vector< Edges< T > >;
using UnWeightedGraph = vector< vector< int > >;
//constant
#define INF 4001002003004005006LL
#define inf 1000000005
#define mod 1000000007LL
#define endl '\n'
typedef modint<mod> mint;
const long double eps = 0.001;
const long double PI = 3.141592653589793;
//library
template< typename Monoid, typename OperatorMonoid = Monoid >
struct LazySegmentTree {
using F = function< Monoid(Monoid, Monoid) >;
using G = function< Monoid(Monoid, OperatorMonoid) >;
using H = function< OperatorMonoid(OperatorMonoid, OperatorMonoid) >;
int sz, height;
vector< Monoid > data;
vector< OperatorMonoid > lazy;
const F f;
const G g;
const H h;
const Monoid M1;
const OperatorMonoid OM0;
LazySegmentTree(int n, const F f, const G g, const H h,
const Monoid &M1, const OperatorMonoid OM0)
: f(f), g(g), h(h), M1(M1), OM0(OM0) {
sz = 1;
height = 0;
while(sz < n) sz <<= 1, height++;
data.assign(2 * sz, M1);
lazy.assign(2 * sz, OM0);
}
void set(int k, const Monoid &x) {
data[k + sz] = x;
}
void build() {
for(int k = sz - 1; k > 0; k--) {
data[k] = f(data[2 * k + 0], data[2 * k + 1]);
}
}
inline void propagate(int k) {
if(lazy[k] != OM0) {
lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);
lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);
data[k] = reflect(k);
lazy[k] = OM0;
}
}
inline Monoid reflect(int k) {
return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]);
}
inline void recalc(int k) {
while(k >>= 1) data[k] = f(reflect(2 * k + 0), reflect(2 * k + 1));
}
inline void thrust(int k) {
for(int i = height; i > 0; i--) propagate(k >> i);
}
void update(int a, int b, const OperatorMonoid &x) {
thrust(a += sz);
thrust(b += sz - 1);
for(int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if(l & 1) lazy[l] = h(lazy[l], x), ++l;
if(r & 1) --r, lazy[r] = h(lazy[r], x);
}
recalc(a);
recalc(b);
}
Monoid query(int a, int b) {
thrust(a += sz);
thrust(b += sz - 1);
Monoid L = M1, R = M1;
for(int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if(l & 1) L = f(L, reflect(l++));
if(r & 1) R = f(reflect(--r), R);
}
return f(L, R);
}
Monoid operator[](const int &k) {
return query(k, k + 1);
}
template< typename C >
int find_subtree(int a, const C &check, Monoid &M, bool type) {
while(a < sz) {
propagate(a);
Monoid nxt = type ? f(reflect(2 * a + type), M) : f(M, reflect(2 * a + type));
if(check(nxt)) a = 2 * a + type;
else M = nxt, a = 2 * a + 1 - type;
}
return a - sz;
}
template< typename C >
int find_first(int a, const C &check) {
Monoid L = M1;
if(a <= 0) {
if(check(f(L, reflect(1)))) return find_subtree(1, check, L, false);
return -1;
}
thrust(a + sz);
int b = sz;
for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
if(a & 1) {
Monoid nxt = f(L, reflect(a));
if(check(nxt)) return find_subtree(a, check, L, false);
L = nxt;
++a;
}
}
return -1;
}
template< typename C >
int find_last(int b, const C &check) {
Monoid R = M1;
if(b >= sz) {
if(check(f(reflect(1), R))) return find_subtree(1, check, R, true);
return -1;
}
thrust(b + sz - 1);
int a = sz;
for(b += sz; a < b; a >>= 1, b >>= 1) {
if(b & 1) {
Monoid nxt = f(reflect(--b), R);
if(check(nxt)) return find_subtree(b, check, R, true);
R = nxt;
}
}
return -1;
}
};
////condition 左から作用するイメージ
//x*em = x
//(x1・x2)*m = (x1*m)・(x2*m) ・ = +の時は注意
//(x1*m1)*m2 = x*(m1×2m)
////X:monoid, M:operator
using X = ll;
using M = ll;
////モノイドのマージ
//auto fx = [](X x1, X x2){return min(x1, x2);};//min
//auto fx = [](X x1, X x2){return max(x1, x2);};//max
////モノイドと作用素のマージ
//auto fa = [](X x, M m){return m;};//replace
//auto fa = [](X x, M m){return m+x;};//sum
////作用素のマージ
//auto fm = [](M m1, M m2){return m2;};//replace
//auto fm = [](M m1, M m2){return m1+m2;};//sum
////fp = m**n
//auto fp = [](M m, long long n){ return m * n; };//sum
//auto fp = [](M m, long long n){ return m; };//min or max
////example
//LazySegTree<X, M> seg(n, fx, fa, fm, fp, ex, em);
////range sum query
using P = pair<X, X>;
////モノイドのマージ 範囲を持たせる
auto fx=[](P a,P b){return P(a.first+b.first,a.second+b.second);};//sum
////モノイドと作用素のマージ 範囲を持たせる
auto fa=[](P a,M b){return P(a.second*b,a.second);};//replace
//auto fa=[](P a,M b){return P(a.first+a.second*b,a.second);};//add
////作用素のマージ(上と同じ)
auto fm = [](M m1, M m2){return m2;};//replace
//auto fm = [](M m1, M m2){return m1+m2;};//add
////単位元 ex.second = 1
P ex = P(0, 0);//初期値はP(0, 1)にすること
//LazySegmentTree<P, M> seg(n, fx, fa, fm, fp, ex, em);
int m = 20010;
ll update(int r, int h, LazySegmentTree<P, M>& seg){
int ok = m, ng = -1;
while(ok-ng>1){
int mid = (ok+ng)/2;
if(seg[mid].first<h)ok = mid;
else ng = mid;
}
ll res=0;
if(ok<r){
res = (r-ok)*h-seg.query(ok, r).first;
seg.update(ok, r, h);
}
return res;
}
void solve(){
ll n; cin>>n;
LazySegmentTree<P, M> ul(m, fx, fa, fm, ex, -1),
ur(m, fx, fa, fm, ex, -1),
dl(m, fx, fa, fm, ex, -1),
dr(m, fx, fa, fm, ex, -1);
rep(i, m)ul.set(i, mp(0, 1)), ur.set(i, mp(0, 1)), dl.set(i, mp(0, 1)), dr.set(i, mp(0, 1));
ul.build();ur.build();dl.build();dr.build();
rep(i, n){
int a, b, c, d; cin>>a>>b>>c>>d;
a = -a;b = -b;
cout << update(c, b, ul)+update(a, b, ur)+update(c, d, dl)+update(a, d, dr) << endl;
}
}
int main(){
cin.tie(0);
ios::sync_with_stdio(0);
cout << setprecision(20);
solve();
}
masayoshi361