結果

問題 No.1074 増殖
ユーザー masayoshi361masayoshi361
提出日時 2020-06-05 22:57:24
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 556 ms / 2,000 ms
コード長 11,191 bytes
コンパイル時間 2,754 ms
コンパイル使用メモリ 192,488 KB
実行使用メモリ 9,472 KB
最終ジャッジ日時 2024-05-09 22:44:08
合計ジャッジ時間 6,567 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 8 ms
9,216 KB
testcase_01 AC 8 ms
9,344 KB
testcase_02 AC 8 ms
9,344 KB
testcase_03 AC 8 ms
9,344 KB
testcase_04 AC 8 ms
9,344 KB
testcase_05 AC 8 ms
9,472 KB
testcase_06 AC 439 ms
9,472 KB
testcase_07 AC 215 ms
9,344 KB
testcase_08 AC 316 ms
9,472 KB
testcase_09 AC 556 ms
9,472 KB
testcase_10 AC 191 ms
9,344 KB
testcase_11 AC 192 ms
9,344 KB
testcase_12 AC 191 ms
9,472 KB
testcase_13 AC 308 ms
9,472 KB
testcase_14 AC 309 ms
9,472 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

//header
#ifdef LOCAL
    #include "cxx-prettyprint-master/prettyprint.hpp"
    #define debug(x) cout << x << endl
#else
    #define debug(...) 42
#endif
    #pragma GCC optimize("Ofast")
    #include <bits/stdc++.h>
    //types
    using namespace std;
    using ll = long long;
    using ul = unsigned long long;
    using ld = long double;
    typedef pair < ll , ll > Pl;        
    typedef pair < int, int > Pi;
    typedef vector<ll> vl;
    typedef vector<int> vi;
    template< typename T >
    using mat = vector< vector< T > >;
    template< int mod >
    struct modint {
        int x;

        modint() : x(0) {}

        modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

        modint &operator+=(const modint &p) {
            if((x += p.x) >= mod) x -= mod;
            return *this;
        }

        modint &operator-=(const modint &p) {
            if((x += mod - p.x) >= mod) x -= mod;
            return *this;
        }

        modint &operator*=(const modint &p) {
            x = (int) (1LL * x * p.x % mod);
            return *this;
        }

        modint &operator/=(const modint &p) {
            *this *= p.inverse();
            return *this;
        }

        modint operator-() const { return modint(-x); }

        modint operator+(const modint &p) const { return modint(*this) += p; }

        modint operator-(const modint &p) const { return modint(*this) -= p; }

        modint operator*(const modint &p) const { return modint(*this) *= p; }

        modint operator/(const modint &p) const { return modint(*this) /= p; }

        bool operator==(const modint &p) const { return x == p.x; }

        bool operator!=(const modint &p) const { return x != p.x; }

        modint inverse() const {
            int a = x, b = mod, u = 1, v = 0, t;
            while(b > 0) {
            t = a / b;
            swap(a -= t * b, b);
            swap(u -= t * v, v);
            }
            return modint(u);
        }

        modint pow(int64_t n) const {
            modint ret(1), mul(x);
            while(n > 0) {
            if(n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
            }
            return ret;
        }

        friend ostream &operator<<(ostream &os, const modint &p) {
            return os << p.x;
        }

        friend istream &operator>>(istream &is, modint &a) {
            int64_t t;
            is >> t;
            a = modint< mod >(t);
            return (is);
        }

        static int get_mod() { return mod; }
    };
    //abreviations
    #define all(x) (x).begin(), (x).end()
    #define rall(x) (x).rbegin(), (x).rend()
    #define rep_(i, a_, b_, a, b, ...) for (int i = (a), max_i = (b); i < max_i; i++)
    #define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
    #define rrep_(i, a_, b_, a, b, ...) for (int i = (b-1), min_i = (a); i >= min_i; i--)
    #define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
    #define SZ(x) ((int)(x).size())
    #define pb(x) push_back(x)
    #define eb(x) emplace_back(x)
    #define mp make_pair
    #define print(x) cout << x << endl
    #define vsum(x) accumulate(x, 0LL)
    #define vmax(a) *max_element(all(a))
    #define vmin(a) *min_element(all(a))
    //functions
    ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; }
    ll lcm(ll a, ll b) { return a/gcd(a, b)*b;}
    template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
    template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
    template< typename T >
    T mypow(T x, ll n) {
        T ret = 1;
        while(n > 0) {
            if(n & 1) (ret *= x);
            (x *= x);
            n >>= 1;
        }
        return ret;
    }
    ll modpow(ll x, ll n, const ll mod) {
        ll ret = 1;
        while(n > 0) {
            if(n & 1) (ret *= x);
            (x *= x);
            n >>= 1;
            x%=mod;
            ret%=mod;
        }
        return ret;
    }
    uint64_t my_rand(void) {
        static uint64_t x = 88172645463325252ULL;
        x = x ^ (x << 13); x = x ^ (x >> 7);
        return x = x ^ (x << 17);
    }
    //graph template
    template< typename T >
    struct edge {
        int src, to;
        T cost;

        edge(int to, T cost) : src(-1), to(to), cost(cost) {}

        edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}

        edge &operator=(const int &x) {
            to = x;
            return *this;
        }
        operator int() const { return to; }
    };
    template< typename T >
    using Edges = vector< edge< T > >;
    template< typename T >
    using WeightedGraph = vector< Edges< T > >;
    using UnWeightedGraph = vector< vector< int > >;

//constant
#define INF 4001002003004005006LL
#define inf 1000000005
#define mod 1000000007LL
#define endl '\n'
typedef modint<mod> mint;
const long double eps = 0.001;
const long double PI  = 3.141592653589793;
//library
template< typename Monoid, typename OperatorMonoid = Monoid >
struct LazySegmentTree {
    using F = function< Monoid(Monoid, Monoid) >;
    using G = function< Monoid(Monoid, OperatorMonoid) >;
    using H = function< OperatorMonoid(OperatorMonoid, OperatorMonoid) >;

    int sz, height;
    vector< Monoid > data;
    vector< OperatorMonoid > lazy;
    const F f;
    const G g;
    const H h;
    const Monoid M1;
    const OperatorMonoid OM0;


    LazySegmentTree(int n, const F f, const G g, const H h,
                                    const Monoid &M1, const OperatorMonoid OM0)
            : f(f), g(g), h(h), M1(M1), OM0(OM0) {
        sz = 1;
        height = 0;
        while(sz < n) sz <<= 1, height++;
        data.assign(2 * sz, M1);
        lazy.assign(2 * sz, OM0);
    }

    void set(int k, const Monoid &x) {
        data[k + sz] = x;
    }

    void build() {
        for(int k = sz - 1; k > 0; k--) {
            data[k] = f(data[2 * k + 0], data[2 * k + 1]);
        }
    }

    inline void propagate(int k) {
        if(lazy[k] != OM0) {
            lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);
            lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);
            data[k] = reflect(k);
            lazy[k] = OM0;
        }
    }

    inline Monoid reflect(int k) {
        return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]);
    }

    inline void recalc(int k) {
        while(k >>= 1) data[k] = f(reflect(2 * k + 0), reflect(2 * k + 1));
    }

    inline void thrust(int k) {
        for(int i = height; i > 0; i--) propagate(k >> i);
    }

    void update(int a, int b, const OperatorMonoid &x) {
        thrust(a += sz);
        thrust(b += sz - 1);
        for(int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
            if(l & 1) lazy[l] = h(lazy[l], x), ++l;
            if(r & 1) --r, lazy[r] = h(lazy[r], x);
        }
        recalc(a);
        recalc(b);
    }

    Monoid query(int a, int b) {
        thrust(a += sz);
        thrust(b += sz - 1);
        Monoid L = M1, R = M1;
        for(int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
            if(l & 1) L = f(L, reflect(l++));
            if(r & 1) R = f(reflect(--r), R);
        }
        return f(L, R);
    }

    Monoid operator[](const int &k) {
        return query(k, k + 1);
    }

    template< typename C >
    int find_subtree(int a, const C &check, Monoid &M, bool type) {
        while(a < sz) {
            propagate(a);
            Monoid nxt = type ? f(reflect(2 * a + type), M) : f(M, reflect(2 * a + type));
            if(check(nxt)) a = 2 * a + type;
            else M = nxt, a = 2 * a + 1 - type;
        }
        return a - sz;
    }

    template< typename C >
    int find_first(int a, const C &check) {
        Monoid L = M1;
        if(a <= 0) {
            if(check(f(L, reflect(1)))) return find_subtree(1, check, L, false);
            return -1;
        }
        thrust(a + sz);
        int b = sz;
        for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
            if(a & 1) {
                Monoid nxt = f(L, reflect(a));
                if(check(nxt)) return find_subtree(a, check, L, false);
                L = nxt;
                ++a;
            }
        }
        return -1;
    }


    template< typename C >
    int find_last(int b, const C &check) {
        Monoid R = M1;
        if(b >= sz) {
            if(check(f(reflect(1), R))) return find_subtree(1, check, R, true);
            return -1;
        }
        thrust(b + sz - 1);
        int a = sz;
        for(b += sz; a < b; a >>= 1, b >>= 1) {
            if(b & 1) {
                Monoid nxt = f(reflect(--b), R);
                if(check(nxt)) return find_subtree(b, check, R, true);
                R = nxt;
            }
        }
        return -1;
    }
};

////condition 左から作用するイメージ
//x*em = x
//(x1・x2)*m = (x1*m)・(x2*m) ・ = +の時は注意
//(x1*m1)*m2 = x*(m1×2m)
////X:monoid, M:operator
using X = ll;
using M = ll;
////モノイドのマージ
//auto fx = [](X x1, X x2){return min(x1, x2);};//min
//auto fx = [](X x1, X x2){return max(x1, x2);};//max
////モノイドと作用素のマージ
//auto fa = [](X x, M m){return m;};//replace
//auto fa = [](X x, M m){return m+x;};//sum
////作用素のマージ
//auto fm = [](M m1, M m2){return m2;};//replace
//auto fm = [](M m1, M m2){return m1+m2;};//sum
////fp = m**n
//auto fp = [](M m, long long n){ return m * n; };//sum
//auto fp = [](M m, long long n){ return m; };//min or max
////example
//LazySegTree<X, M> seg(n, fx, fa, fm, fp, ex, em);
////range sum query
using P = pair<X, X>;
////モノイドのマージ 範囲を持たせる
auto fx=[](P a,P b){return P(a.first+b.first,a.second+b.second);};//sum
////モノイドと作用素のマージ 範囲を持たせる
auto fa=[](P a,M b){return P(a.second*b,a.second);};//replace
//auto fa=[](P a,M b){return P(a.first+a.second*b,a.second);};//add
////作用素のマージ(上と同じ)
auto fm = [](M m1, M m2){return m2;};//replace
//auto fm = [](M m1, M m2){return m1+m2;};//add
////単位元 ex.second = 1
P ex = P(0, 0);//初期値はP(0, 1)にすること
//LazySegmentTree<P, M> seg(n, fx, fa, fm, fp, ex, em);

int m = 20010;
ll update(int r, int h, LazySegmentTree<P, M>& seg){
    int ok = m, ng = -1;
    while(ok-ng>1){
        int mid = (ok+ng)/2;
        if(seg[mid].first<h)ok = mid;
        else ng = mid;
    }
    ll res=0;
    if(ok<r){
        res = (r-ok)*h-seg.query(ok, r).first;
        seg.update(ok, r, h);
    }
    return res;
}
void solve(){
    ll n; cin>>n;
    LazySegmentTree<P, M> ul(m, fx, fa, fm, ex, -1), 
                          ur(m, fx, fa, fm, ex, -1), 
                          dl(m, fx, fa, fm, ex, -1), 
                          dr(m, fx, fa, fm, ex, -1);
    rep(i, m)ul.set(i, mp(0, 1)), ur.set(i, mp(0, 1)), dl.set(i, mp(0, 1)), dr.set(i, mp(0, 1));
    ul.build();ur.build();dl.build();dr.build();
    rep(i, n){
        int a, b, c, d; cin>>a>>b>>c>>d;
        a = -a;b = -b;
        cout << update(c, b, ul)+update(a, b, ur)+update(c, d, dl)+update(a, d, dr) << endl;
    }
}
int main(){
    cin.tie(0);
    ios::sync_with_stdio(0);
    cout << setprecision(20);
    solve();
}
0