結果

問題 No.1339 循環小数
ユーザー Kiri8128Kiri8128
提出日時 2020-06-06 03:07:04
言語 Python3
(3.12.2 + numpy 1.26.4 + scipy 1.12.0)
結果
AC  
実行時間 82 ms / 2,000 ms
コード長 2,577 bytes
コンパイル時間 128 ms
コンパイル使用メモリ 12,800 KB
実行使用メモリ 11,136 KB
最終ジャッジ日時 2024-09-13 01:48:32
合計ジャッジ時間 3,281 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 32 ms
11,008 KB
testcase_01 AC 34 ms
11,008 KB
testcase_02 AC 33 ms
11,008 KB
testcase_03 AC 34 ms
11,008 KB
testcase_04 AC 34 ms
11,008 KB
testcase_05 AC 33 ms
10,880 KB
testcase_06 AC 33 ms
11,008 KB
testcase_07 AC 33 ms
11,008 KB
testcase_08 AC 33 ms
11,008 KB
testcase_09 AC 32 ms
11,008 KB
testcase_10 AC 34 ms
10,880 KB
testcase_11 AC 36 ms
10,880 KB
testcase_12 AC 36 ms
11,008 KB
testcase_13 AC 37 ms
11,008 KB
testcase_14 AC 36 ms
11,008 KB
testcase_15 AC 36 ms
10,880 KB
testcase_16 AC 36 ms
11,008 KB
testcase_17 AC 36 ms
11,136 KB
testcase_18 AC 35 ms
11,008 KB
testcase_19 AC 35 ms
11,008 KB
testcase_20 AC 36 ms
10,880 KB
testcase_21 AC 66 ms
11,008 KB
testcase_22 AC 67 ms
11,008 KB
testcase_23 AC 65 ms
11,008 KB
testcase_24 AC 67 ms
11,008 KB
testcase_25 AC 65 ms
11,008 KB
testcase_26 AC 62 ms
10,880 KB
testcase_27 AC 70 ms
10,880 KB
testcase_28 AC 64 ms
10,880 KB
testcase_29 AC 66 ms
10,880 KB
testcase_30 AC 62 ms
10,880 KB
testcase_31 AC 76 ms
10,880 KB
testcase_32 AC 82 ms
11,008 KB
testcase_33 AC 72 ms
10,880 KB
testcase_34 AC 44 ms
11,008 KB
testcase_35 AC 45 ms
10,880 KB
testcase_36 AC 68 ms
11,008 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

def gcd(a, b):
    while b: a, b = b, a % b
    return a
def isPrimeMR(n):
    d = n - 1
    d = d // (d & -d)
    L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
    for a in L:
        t = d
        y = pow(a, t, n)
        if y == 1: continue
        while y != n - 1:
            y = y * y % n
            if y == 1 or t == n - 1: return 0
            t <<= 1
    return 1
def findFactorRho(n):
    m = 1 << n.bit_length() // 8
    for c in range(1, 99):
        f = lambda x: (x * x + c) % n
        y, r, q, g = 2, 1, 1, 1
        while g == 1:
            x = y
            for i in range(r):
                y = f(y)
            k = 0
            while k < r and g == 1:
                ys = y
                for i in range(min(m, r - k)):
                    y = f(y)
                    q = q * abs(x - y) % n
                g = gcd(q, n)
                k += m
            r <<= 1
        if g == n:
            g = 1
            while g == 1:
                ys = f(ys)
                g = gcd(abs(x - ys), n)
        if g < n:
            if isPrimeMR(g): return g
            elif isPrimeMR(n // g): return n // g
            return findFactorRho(g)
def primeFactor(n):
    i = 2
    ret = {}
    rhoFlg = 0
    while i * i <= n:
        k = 0
        while n % i == 0:
            n //= i
            k += 1
        if k: ret[i] = k
        i += i % 2 + (3 if i % 3 == 1 else 1)
        if i == 101 and n >= 2 ** 20:
            while n > 1:
                if isPrimeMR(n):
                    ret[n], n = 1, 1
                else:
                    rhoFlg = 1
                    j = findFactorRho(n)
                    k = 0
                    while n % j == 0:
                        n //= j
                        k += 1
                    ret[j] = k

    if n > 1: ret[n] = 1
    if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
    return ret
def divisors(N):
    pf = primeFactor(N)
    ret = [1]
    for p in pf:
        ret_prev = ret
        ret = []
        for i in range(pf[p]+1):
            for r in ret_prev:
                ret.append(r * (p ** i))
    return sorted(ret)
def calc(n):
    while n % 2 == 0:
        n //= 2
    while n % 5 == 0:
        n //= 5
    if n == 1:
        return 1
    pf = primeFactor(n)
    a = 1
    for p in pf:
        a *= (p - 1) * p ** (pf[p] - 1)
    
    for d in divisors(a):
        if pow(10, d, n) == 1:
            return d
            break
T = int(input())
for _ in range(T):
    N = int(input())
    print(calc(N))
0