結果
問題 | No.1339 循環小数 |
ユーザー |
![]() |
提出日時 | 2020-06-06 03:07:04 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 82 ms / 2,000 ms |
コード長 | 2,577 bytes |
コンパイル時間 | 128 ms |
コンパイル使用メモリ | 12,800 KB |
実行使用メモリ | 11,136 KB |
最終ジャッジ日時 | 2024-09-13 01:48:32 |
合計ジャッジ時間 | 3,281 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 36 |
ソースコード
def gcd(a, b):while b: a, b = b, a % breturn adef isPrimeMR(n):d = n - 1d = d // (d & -d)L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]for a in L:t = dy = pow(a, t, n)if y == 1: continuewhile y != n - 1:y = y * y % nif y == 1 or t == n - 1: return 0t <<= 1return 1def findFactorRho(n):m = 1 << n.bit_length() // 8for c in range(1, 99):f = lambda x: (x * x + c) % ny, r, q, g = 2, 1, 1, 1while g == 1:x = yfor i in range(r):y = f(y)k = 0while k < r and g == 1:ys = yfor i in range(min(m, r - k)):y = f(y)q = q * abs(x - y) % ng = gcd(q, n)k += mr <<= 1if g == n:g = 1while g == 1:ys = f(ys)g = gcd(abs(x - ys), n)if g < n:if isPrimeMR(g): return gelif isPrimeMR(n // g): return n // greturn findFactorRho(g)def primeFactor(n):i = 2ret = {}rhoFlg = 0while i * i <= n:k = 0while n % i == 0:n //= ik += 1if k: ret[i] = ki += i % 2 + (3 if i % 3 == 1 else 1)if i == 101 and n >= 2 ** 20:while n > 1:if isPrimeMR(n):ret[n], n = 1, 1else:rhoFlg = 1j = findFactorRho(n)k = 0while n % j == 0:n //= jk += 1ret[j] = kif n > 1: ret[n] = 1if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}return retdef divisors(N):pf = primeFactor(N)ret = [1]for p in pf:ret_prev = retret = []for i in range(pf[p]+1):for r in ret_prev:ret.append(r * (p ** i))return sorted(ret)def calc(n):while n % 2 == 0:n //= 2while n % 5 == 0:n //= 5if n == 1:return 1pf = primeFactor(n)a = 1for p in pf:a *= (p - 1) * p ** (pf[p] - 1)for d in divisors(a):if pow(10, d, n) == 1:return dbreakT = int(input())for _ in range(T):N = int(input())print(calc(N))