結果
| 問題 |
No.675 ドットちゃんたち
|
| コンテスト | |
| ユーザー |
🍮かんプリン
|
| 提出日時 | 2020-06-08 17:33:13 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 222 ms / 2,000 ms |
| コード長 | 4,522 bytes |
| コンパイル時間 | 2,149 ms |
| コンパイル使用メモリ | 169,556 KB |
| 実行使用メモリ | 24,448 KB |
| 最終ジャッジ日時 | 2024-12-26 00:44:10 |
| 合計ジャッジ時間 | 4,378 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 8 |
ソースコード
/**
* @FileName a.cpp
* @Author kanpurin
* @Created 2020.06.08 17:33:08
**/
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
template< class T >
struct Matrix {
std::vector< std::vector< T > > A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, std::vector< T >(m, 0)) {}
Matrix(size_t n) : A(n, std::vector< T >(n, 0)) {};
size_t height() const {
return (A.size());
}
size_t width() const {
return (A[0].size());
}
inline const std::vector< T > &operator[](int k) const {
return (A.at(k));
}
inline std::vector< T > &operator[](int k) {
return (A.at(k));
}
static Matrix I(size_t n) {
Matrix mat(n);
for (int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
(*this)[i][j] += B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
(*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
std::vector< std::vector< T > > C(n, std::vector< T >(m, 0));
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
for (int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
A.swap(C);
return (*this);
}
Matrix operator+(const Matrix &B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix &B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix &B) const {
return (Matrix(*this) *= B);
}
friend std::ostream &operator<<(std::ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; i++) {
os << "[";
for (int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for (int i = 0; i < width(); i++) {
int idx = -1;
for (int j = i; j < width(); j++) {
if (B[j][i] != 0) idx = j;
}
if (idx == -1) return (0);
if (i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for (int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for (int j = i + 1; j < width(); j++) {
T a = B[j][i];
for (int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
Matrix pow(ll k) const {
auto res = I(A.size());
auto M = *this;
while (k > 0) {
if (k & 1) {
res *= M;
}
M *= M;
k >>= 1;
}
return res;
}
};
int main() {
int n,px,py;cin >> n >> px >> py;
vector<Matrix<ll>> mat(n,Matrix<ll>(3));
for (int i = 0; i < n; i++) {
int c;cin >> c;
if (c == 1) {
int d; cin >> d;
for (int j = 0; j < 3; j++) {
mat[i][j][j] = 1;
}
mat[i][0][2] = d;
}
else if (c == 2) {
int d;cin >> d;
for (int j = 0; j < 3; j++) {
mat[i][j][j] = 1;
}
mat[i][1][2] = d;
}
else {
mat[i][0][1] = 1;
mat[i][1][0] = -1;
mat[i][2][2] = 1;
}
}
vector<pair<ll,ll>> ans(n);
Matrix<ll> now = Matrix<ll>::I(3);
for (int i = n-1; i >= 0; i--) {
now *= mat[i];
ans[i].first = now[0][0] * px + now[0][1] * py + now[0][2];
ans[i].second = now[1][0] * px + now[1][1] * py + now[1][2];
}
for (int i = 0; i < n; i++) {
cout << ans[i].first << " " << ans[i].second << endl;
}
return 0;
}
🍮かんプリン