結果

問題 No.1078 I love Matrix Construction
ユーザー kcvlexkcvlex
提出日時 2020-06-12 22:00:22
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 502 ms / 2,000 ms
コード長 9,314 bytes
コンパイル時間 2,599 ms
コンパイル使用メモリ 168,120 KB
最終ジャッジ日時 2025-01-11 02:34:01
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #

#define CPP17
#include <limits>
#include <initializer_list>
#include <utility>
#include <bitset>
#include <tuple>
#include <type_traits>
#include <functional>
#include <string>
#include <array>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <iterator>
#include <algorithm>
#include <complex>
#include <random>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <regex>
#include <cassert>
#include <cstddef>
#ifdef CPP17
#include <variant>
#endif

// Yay!!
#define endl codeforces

// macros for iterator
#define ALL(v) std::begin(v), std::end(v)
#define ALLR(v) std::rbegin(v), std::rend(v)

// alias
using ll = std::int64_t;
using ull = std::uint64_t;
using pii = std::pair<int, int>;
using tii = std::tuple<int, int, int>;
using pll = std::pair<ll, ll>;
using tll = std::tuple<ll, ll, ll>;
template <typename T> using vec = std::vector<T>;
template <typename T> using vvec = vec<vec<T>>;

// variadic min/max
template <typename T> const T& var_min(const T &t) { return t; }
template <typename T> const T& var_max(const T &t) { return t; }
template <typename T, typename... Tail> const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); }
template <typename T, typename... Tail> const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); }

// variadic chmin/chmax
template <typename T, typename... Tail> void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); }
template <typename T, typename... Tail> void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); }

// multi demension array
template <typename T, std::size_t Head, std::size_t... Tail> struct multi_dim_array { using type = std::array<typename multi_dim_array<T, Tail...>::type, Head>; };
template <typename T, std::size_t Head> struct multi_dim_array<T, Head> { using type = std::array<T, Head>; };
template <typename T, std::size_t... Args> using mdarray = typename multi_dim_array<T, Args...>::type;

#ifdef CPP17
// fill container
template <typename T, typename F, typename... Args> 
void fill_seq(T &t, F f, Args... args) { if constexpr (std::is_invocable<F, Args...>::value) { t = f(args...); } else { for (ssize_t i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i); } }
#endif

// make multi dimension vector
template <typename T> vec<T> make_v(ssize_t sz) { return vec<T>(sz); }
template <typename T, typename... Tail> auto make_v(ssize_t hs, Tail&&... ts) { auto v = std::move(make_v<T>(std::forward<Tail>(ts)...)); return vec<decltype(v)>(hs, v); }

// init
namespace init__ { 
struct InitIO { InitIO() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(30); } } init_io; 
}


namespace graph {

using Node = ll;
using Weight = ll;
using Edge = std::pair<Node, Weight>;

template <bool Directed>
struct Graph : public vvec<Edge> {
    using vvec<Edge>::vvec;

    void add_edge(Node f, Node t, Weight w = 1) {
        (*this)[f].emplace_back(t, w);
        if (!Directed) (*this)[t].emplace_back(f, w);
    }

    Graph<Directed> build_inv() const {
        Graph<Directed> ret(this->size());
        for (Node i = 0; i < this->size(); i++) {
            for (const Edge &e : (*this)[i]) {
                Node j;
                Weight w;
                std::tie(j, w) = e;
                if (!Directed && j < i) continue;
                ret.add_edge(j, i, w);
            }
        }

        return ret;
    }
};

template <typename Iterator>
class dst_iterator {
    Iterator ite;

public:
    dst_iterator(Iterator ite) : ite(ite) { }

    bool operator ==(const dst_iterator<Iterator> &oth) const {
        return ite == oth.ite;
    }

    bool operator !=(const dst_iterator<Iterator> &oth) const {
        return !(*this == oth);
    }

    bool operator <(const dst_iterator<Iterator> &oth) const {
        return ite < oth.ite;
    }

    bool operator >(const dst_iterator<Iterator> &oth) const {
        return ite > oth.ite;
    }

    bool operator <=(const dst_iterator<Iterator> &oth) const {
        return ite <= oth.ite;
    }

    bool operator >=(const dst_iterator<Iterator> &oth) const {
        return ite >= oth.ite;
    }

    const Node& operator *() {
        return ite->first;
    }

    const Node& operator *() const {
        return ite->first;
    }

    dst_iterator operator ++() {
        ++ite;
        return ite;
    }
};

class dst_iteration {
    using ite_type = vec<Edge>::const_iterator;
    const vec<Edge> &edges;

public:
    dst_iteration(const vec<Edge> &edges) : edges(edges) { }

    auto begin() const {
        return dst_iterator<ite_type>(edges.cbegin());
    }

    auto end() const {
        return dst_iterator<ite_type>(edges.cend());
    }
};

class dst_reverse_iteration {
    using ite_type = vec<Edge>::const_reverse_iterator;
    const vec<Edge> &edges;

public:
    dst_reverse_iteration(const vec<Edge> &edges) : edges(edges) { }

    auto begin() const {
        return dst_iterator<ite_type>(edges.crbegin());
    }

    auto end() const {
        return dst_iterator<ite_type>(edges.crend());
    }
};

dst_iteration dst(const vec<Edge> &edges) {
    return dst_iteration(edges);
}

dst_reverse_iteration rdst(const vec<Edge> &edges) {
    return dst_reverse_iteration(edges);
}

}

namespace graph {

template <typename Graph>
class StronglyConnectedComponents {
    const Graph &graph;
    Graph rgraph;
    vec<ll> label, scc_ord;

    void dfs1(ll cur, ll &l) {
        label[cur] = -2;
        for (const graph::Edge &e : graph[cur]) {
            ll nxt;
            std::tie(nxt, std::ignore) = e;
            if (label[nxt] != -1) continue;
            dfs1(nxt, l);
        }
        label[cur] = l++;
    }

    void write_label() {
        ll l = 0;
        for (ll i = 0; i < graph.size(); i++) if (label[i] == -1) dfs1(i, l);
    }

    void dfs2(ll cur, ll l, ll &idx, vec<ll> &result) {
        result[cur] = l;
        scc_ord[idx++] = cur;
        for (const graph::Edge &e : rgraph[cur]) {
            ll nxt;
            std::tie(nxt, std::ignore) = e;
            if (result[nxt] != -1) continue;
            dfs2(nxt, l, idx, result);
        }
    }

    vec<ll> build_scc() {
        ll l = 0;
        vec<ll> result(graph.size(), -1), ord(rgraph.size());
        std::iota(ALL(ord), 0ll);
        std::sort(ALL(ord), [&](ll i, ll j) { return label[i] > label[j]; });
        ll idx = 0;
        for (ll n : ord) if (result[n] == -1) dfs2(n, l++, idx, result);
        return result;
    }

public:
    StronglyConnectedComponents(const Graph &graph)
        : graph(graph), label(graph.size(), -1), scc_ord(graph.size())
    {
        rgraph = graph.build_inv();
    }

    vec<ll> build() {
        vec<ll> result(graph.size(), -1);
        write_label();
        return build_scc();
    }

    std::pair<::graph::Graph<true>, vec<ll>> build_scc_graph() {
        auto scc_label = build();
        ::graph::Graph<true> scc_graph(*std::max_element(ALL(scc_label)) + 1);
        for (ll from = 0; from < graph.size(); from++) for (auto &&e : graph[from]) {
            ll to;
            std::tie(to, std::ignore) = e;
            ll lf = scc_label[from], lt = scc_label[to];
            if (lf != lt) scc_graph.add_edge(lf, lt);
        }
        return std::make_pair(std::move(scc_graph), std::move(scc_label));
    }
};

template <typename Graph> using SCC = StronglyConnectedComponents<Graph>;

}

int main() {
    ll n;
    std::cin >> n;
    vec<ll> sv(n), tv(n), uv(n);
    for (ll &e : sv) {
        std::cin >> e;
        e--;
    }
    for (ll &e : tv) {
        std::cin >> e;
        e--;
    }
    for (ll &e : uv) std::cin >> e;

    auto make_id = [&](ll r, ll c) { return r * n + c; };

    graph::Graph<true> g(2 * n * n);
    for (ll i = 0; i < n; i++) for (ll j = 0; j < n; j++) {
        ll r1 = sv[i], c1 = j;
        ll r2 = j, c2 = tv[i];
        ll id1 = make_id(r1, c1);
        ll id2 = make_id(r2, c2);
        ll nid1 = id1 + n * n, nid2 = id2 + n * n;
        if (uv[i] == 0) {
            // not 0 or not 0
            // 1 => 0 and 1 => 0
            g.add_edge(id1, nid2);
            g.add_edge(id2, nid1);
        } else if (uv[i] == 1) {
            // not 1 or not 0
            // 0 => 0 and 1 => 1
            g.add_edge(nid1, nid2);
            g.add_edge(id2, id1);
        } else if (uv[i] == 2){ 
            // not 0 or not 1
            // 1 => 1 and 0 => 0
            g.add_edge(id1, id2);
            g.add_edge(nid2, nid1);
        } else if (uv[i] == 3) {
            // not 1 or not 1
            // 0 => 1 and 0 => 1
            g.add_edge(nid1, id2);
            g.add_edge(nid2, id1);
        }
    }

    graph::SCC<decltype(g)> scc(g);
    auto label = scc.build();
    auto ans = make_v<ll>(n, n);
    for (ll i = 0; i < n * n; i++) {
        if (label[i] == label[i + n * n]) {
            std::cout << -1 << "\n";
            return 0;
        }
        ll r = i / n, c = i % n;
        if (label[i] > label[i + n * n]) ans[r][c] = 0;
        else ans[r][c] = 1;
    }

    for (auto &&v : ans) for (ll i = 0; i < n; i++) std::cout << v[i] << " \n"[i + 1 == n];
    return 0;
}
0