結果

問題 No.1078 I love Matrix Construction
ユーザー SumitacchanSumitacchan
提出日時 2020-06-12 22:10:29
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 350 ms / 2,000 ms
コード長 4,310 bytes
コンパイル時間 2,227 ms
コンパイル使用メモリ 184,088 KB
実行使用メモリ 63,232 KB
最終ジャッジ日時 2024-06-24 05:07:14
合計ジャッジ時間 7,712 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 32 ms
11,924 KB
testcase_03 AC 108 ms
25,952 KB
testcase_04 AC 154 ms
34,748 KB
testcase_05 AC 133 ms
29,160 KB
testcase_06 AC 32 ms
11,604 KB
testcase_07 AC 10 ms
6,944 KB
testcase_08 AC 123 ms
29,572 KB
testcase_09 AC 6 ms
6,944 KB
testcase_10 AC 350 ms
63,232 KB
testcase_11 AC 170 ms
36,524 KB
testcase_12 AC 274 ms
52,752 KB
testcase_13 AC 324 ms
59,412 KB
testcase_14 AC 207 ms
41,884 KB
testcase_15 AC 300 ms
56,332 KB
testcase_16 AC 10 ms
6,940 KB
testcase_17 AC 2 ms
6,940 KB
testcase_18 AC 22 ms
9,460 KB
testcase_19 AC 61 ms
17,708 KB
testcase_20 AC 60 ms
17,564 KB
testcase_21 AC 3 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define FOR(i, begin, end) for(int i=(begin);i<(end);i++)
#define REP(i, n) FOR(i,0,n)
#define IFOR(i, begin, end) for(int i=(end)-1;i>=(begin);i--)
#define IREP(i, n) IFOR(i,0,n)
#define Sort(v) sort(v.begin(), v.end())
#define Reverse(v) reverse(v.begin(), v.end())
#define all(v) v.begin(),v.end()
#define SZ(v) ((int)v.size())
#define Lower_bound(v, x) distance(v.begin(), lower_bound(v.begin(), v.end(), x))
#define Upper_bound(v, x) distance(v.begin(), upper_bound(v.begin(), v.end(), x))
#define Max(a, b) a = max(a, b)
#define Min(a, b) a = min(a, b)
#define bit(n) (1LL<<(n))
#define debug(x) cout << #x << "=" << x << endl;
#define vdebug(v) { cout << #v << "=" << endl; REP(i_debug, v.size()){ cout << v[i_debug] << ","; } cout << endl; }
#define mdebug(m) { cout << #m << "=" << endl; REP(i_debug, m.size()){ REP(j_debug, m[i_debug].size()){ cout << m[i_debug][j_debug] << ","; } cout << endl;} }
#define Return(ans) { cout << (ans) << endl; return 0; }
#define pb push_back
#define fi first
#define se second
#define int long long
#define INF 1000000000000000000
template<typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; }
template<typename T> ostream &operator<<(ostream &os, vector<T> &v){ for(int i = 0; i < v.size(); i++) { cout << v[i]; if(i != v.size() - 1) cout << endl; }; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, pair<T1, T2> p){ cout << '(' << p.first << ',' << p.second << ')'; return os; }
template<typename T> void Out(T x) { cout << x << endl; }
template<typename T1, typename T2> void Ans(bool f, T1 y, T2 n) { if(f) Out(y); else Out(n); }

using vec = vector<int>;
using mat = vector<vec>;
using Pii = pair<int, int>;
using v_bool = vector<bool>;
using v_Pii = vector<Pii>;

//int dx[4] = {1,0,-1,0};
//int dy[4] = {0,1,0,-1};
//char d[4] = {'D','R','U','L'};

const int mod = 1000000007;
//const int mod = 998244353;

struct edge{int to, cost, id;};

class Graph
{
public:
    int N;
    vector<vector<edge>> G;

    Graph(int N): N(N){
        G = vector<vector<edge>>(N, vector<edge>(0));
    }

    void add_Directed_edge(int from, int to, int cost = 1, int id = 0){
        G[from].push_back(edge({to, cost, id}));
    }

    void add_Undirected_edge(int v1, int v2, int cost = 1, int id = 0){
        add_Directed_edge(v1, v2, cost, id);
        add_Directed_edge(v2, v1, cost, id);
    }

    //SCC decomposition
    void dfs(int v, vector<bool> &used, vec &vs){
        used[v] = true;
        REP(i, G[v].size()){
            if(!used[G[v][i].to]) dfs(G[v][i].to, used, vs);
        }
        vs.push_back(v);
    }
    void rdfs(int v, int k, vector<bool> &used, vec &cmp){
        used[v] = true;
        cmp[v] = k;
        REP(i, G[v].size()){
            if(!used[G[v][i].to]) rdfs(G[v][i].to, k, used, cmp);
        }
    }
    //u->v => cmp[u]<cmp[v]
    vec scc(int &k){
        vector<bool> used(N, false);
        vec vs(0), cmp(N);
        REP(i, N){
            if(!used[i]) dfs(i, used, vs);
        }
        //reverse graph
        Graph rG(N);
        REP(v, N) REP(i, G[v].size()) rG.add_Directed_edge(G[v][i].to, v, G[v][i].cost);

        fill(used.begin(), used.end(), false);
        k = 0;
        IREP(i, vs.size()){
            if(!used[vs[i]]) rG.rdfs(vs[i], k++, used, cmp);
        }
        return cmp;
    }

};

signed main(){

    int N; cin >> N;
    vec S(N), T(N), U(N);
    cin >> S >> T >> U;
    REP(i, N){
        S[i]--; T[i]--;
    }

    Graph G(2 * N * N);
    REP(i, N) REP(j, N){
        int a = S[i] * N + j, b = j * N + T[i];
        int x = U[i] % 2, y = U[i] / 2;

        G.add_Directed_edge(a + N * N * x, b + N * N * (y ^ 1));
        G.add_Directed_edge(b + N * N * y, a + N * N * (x ^ 1));
    }
    int sz;
    vec cmp = G.scc(sz);

    mat ans(N, vec(N, 0));
    REP(i, N) REP(j, N){
        int k = N * i + j;
        if(cmp[k] == cmp[k + N * N]){
            Out(-1);
            return 0;
        }else if(cmp[k] < cmp[k + N * N]) ans[i][j] = 1;
    }

    REP(i, N){
        REP(j, N) cout << ans[i][j] << " ";
        cout << endl;
    }

    return 0;
}
0