結果
問題 | No.1080 Strange Squared Score Sum |
ユーザー | chocorusk |
提出日時 | 2020-06-12 22:17:46 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 911 ms / 5,000 ms |
コード長 | 9,058 bytes |
コンパイル時間 | 2,223 ms |
コンパイル使用メモリ | 152,412 KB |
実行使用メモリ | 34,120 KB |
最終ジャッジ日時 | 2024-06-24 05:12:54 |
合計ジャッジ時間 | 13,437 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 438 ms
18,916 KB |
testcase_03 | AC | 863 ms
32,648 KB |
testcase_04 | AC | 202 ms
11,076 KB |
testcase_05 | AC | 213 ms
11,160 KB |
testcase_06 | AC | 47 ms
6,944 KB |
testcase_07 | AC | 98 ms
7,380 KB |
testcase_08 | AC | 425 ms
18,928 KB |
testcase_09 | AC | 409 ms
18,324 KB |
testcase_10 | AC | 47 ms
6,940 KB |
testcase_11 | AC | 841 ms
33,056 KB |
testcase_12 | AC | 413 ms
18,308 KB |
testcase_13 | AC | 880 ms
33,320 KB |
testcase_14 | AC | 424 ms
18,300 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 911 ms
34,120 KB |
testcase_17 | AC | 452 ms
19,072 KB |
testcase_18 | AC | 458 ms
19,080 KB |
testcase_19 | AC | 457 ms
19,080 KB |
testcase_20 | AC | 862 ms
33,148 KB |
testcase_21 | AC | 863 ms
33,060 KB |
ソースコード
#include <cstdio> #include <cstring> #include <iostream> #include <string> #include <cmath> #include <bitset> #include <vector> #include <map> #include <set> #include <queue> #include <deque> #include <algorithm> #include <complex> #include <unordered_map> #include <unordered_set> #include <random> #include <cassert> #include <fstream> #include <utility> #include <functional> #include <time.h> #include <stack> #include <array> #define popcount __builtin_popcount using namespace std; typedef long long int ll; typedef pair<int, int> P; namespace FastFourierTransform { using real = double; struct C { real x, y; C() : x(0), y(0) {} C(real x, real y) : x(x), y(y) {} inline C operator+(const C &c) const { return C(x + c.x, y + c.y); } inline C operator-(const C &c) const { return C(x - c.x, y - c.y); } inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); } inline C conj() const { return C(x, -y); } }; const real PI = acosl(-1); int base = 1; vector< C > rts = { {0, 0}, {1, 0} }; vector< int > rev = {0, 1}; void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } while(base < nbase) { real angle = PI * 2.0 / (1 << (base + 1)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; real angle_i = angle * (2 * i + 1 - (1 << base)); rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i)); } ++base; } } void fft(vector< C > &a, int n) { assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { C z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } vector< int64_t > multiply(const vector< int > &a, const vector< int > &b) { int need = (int) a.size() + (int) b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < sz; i++) { int x = (i < (int) a.size() ? a[i] : 0); int y = (i < (int) b.size() ? b[i] : 0); fa[i] = C(x, y); } fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for(int i = 0; i < (sz >> 1); i++) { C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } fft(fa, sz >> 1); vector< int64_t > ret(need); for(int i = 0; i < need; i++) { ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; } }; template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; const ll MOD=1e9+9; using mint = ModInt< MOD >; template< typename T > struct ArbitraryModConvolution { using real = FastFourierTransform::real; using C = FastFourierTransform::C; ArbitraryModConvolution() = default; vector< T > multiply(const vector< T > &a, const vector< T > &b, int need = -1) { if(need == -1) need = a.size() + b.size() - 1; int nbase = 0; while((1 << nbase) < need) nbase++; FastFourierTransform::ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < a.size(); i++) { fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15); } fft(fa, sz); vector< C > fb(sz); if(a == b) { fb = fa; } else { for(int i = 0; i < b.size(); i++) { fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15); } fft(fb, sz); } real ratio = 0.25 / sz; C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C a1 = (fa[i] + fa[j].conj()); C a2 = (fa[i] - fa[j].conj()) * r2; C b1 = (fb[i] + fb[j].conj()) * r3; C b2 = (fb[i] - fb[j].conj()) * r4; if(i != j) { C c1 = (fa[j] + fa[i].conj()); C c2 = (fa[j] - fa[i].conj()) * r2; C d1 = (fb[j] + fb[i].conj()) * r3; C d2 = (fb[j] - fb[i].conj()) * r4; fa[i] = c1 * d1 + c2 * d2 * r5; fb[i] = c1 * d2 + c2 * d1; } fa[j] = a1 * b1 + a2 * b2 * r5; fb[j] = a1 * b2 + a2 * b1; } fft(fa, sz); fft(fb, sz); vector< T > ret(need); for(int i = 0; i < need; i++) { int64_t aa = llround(fa[i].x); int64_t bb = llround(fb[i].x); int64_t cc = llround(fa[i].y); aa = T(aa).x, bb = T(bb).x, cc = T(cc).x; ret[i] = aa + (bb << 15) + (cc << 30); } return ret; } }; ll powmod(ll a, ll k){ ll ap=a, ans=1; while(k){ if(k&1){ ans*=ap; ans%=MOD; } ap=ap*ap; ap%=MOD; k>>=1; } return ans; } ll inv(ll a){ return powmod(a, MOD-2); } ArbitraryModConvolution<mint> fft; vector<ll> multiply(vector<ll> a, vector<ll> b){ vector<mint> a1(a.size()), b1(b.size()); for(int i=0; i<a.size(); i++) a1[i]=mint(a[i]); for(int i=0; i<b.size(); i++) b1[i]=mint(b[i]); auto c1=fft.multiply(a1, b1); vector<ll> c(c1.size()); for(int i=0; i<c1.size(); i++) c[i]=c1[i].x; return c; } vector<ll> inverse(vector<ll> a){ ll a0=a[0], a0inv=inv(a0); int n=a.size(); for(int i=0; i<n; i++) (a[i]*=a0inv)%=MOD; int k=0; while((1<<k)<n) k++; vector<ll> b(1, 1); for(int i=1; i<=k; i++){ vector<ll> a1(1<<i); for(int j=0; j<min(1<<i, n); j++) a1[j]=a[j]; vector<ll> b1=multiply(b, b); b1=multiply(b1, a1); b.resize(1<<i); for(int j=0; j<(1<<i); j++) b[j]=(2*b[j]-b1[j]+MOD)%MOD; } b.resize(n); for(int i=0; i<n; i++) (b[i]*=a0inv)%=MOD; return b; } vector<ll> log(vector<ll> a){ int n=a.size(); if(n==1){ vector<ll> c(1); return c; } vector<ll> da(n); for(int i=0; i<n-1; i++) da[i]=a[i+1]*(i+1)%MOD; vector<ll> b=inverse(a); vector<ll> c=multiply(da, b); c.resize(n); vector<ll> invs(n); invs[1]=1; for(int i=2; i<n; i++) invs[i]=MOD-invs[MOD%i]*(MOD/i)%MOD; for(int i=n-1; i>=1; i--) c[i]=c[i-1]*invs[i]%MOD; c[0]=0; return c; } vector<ll> exp(vector<ll> a){ int n=a.size(); int k=0; while((1<<k)<n) k++; vector<ll> b(1, 1); for(int i=1; i<=k; i++){ b.resize(1<<i); vector<ll> b1=log(b); for(int j=0; j<(1<<i); j++){ b1[j]=MOD-b1[j]; if(b1[j]>=MOD) b1[j]-=MOD; } for(int j=0; j<min(n, 1<<i); j++){ b1[j]+=a[j]; if(b1[j]>=MOD) b1[j]-=MOD; } b1[0]++; if(b1[0]>=MOD) b1[0]-=MOD; b=multiply(b, b1); } b.resize(n); return b; } int main() { int n; cin>>n; const ll I=569522298; vector<ll> f1(n+1), f2(n+1); for(ll i=1; i<=n; i++){ f1[i]=(i+1)*(i+1)%MOD*I%MOD; f2[i]=(MOD-f1[i])%MOD; } auto g1=exp(f1), g2=exp(f2); ll fn=1; for(int i=1; i<=n; i++) (fn*=i)%=MOD; for(int i=1; i<=n; i++){ cout<<(g1[i]*(1-I+MOD)+g2[i]*(1+I))%MOD*((MOD+1)/2)%MOD*fn%MOD<<endl; } return 0; }