結果

問題 No.1080 Strange Squared Score Sum
ユーザー chocorusk
提出日時 2020-06-12 22:17:46
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,140 ms / 5,000 ms
コード長 9,058 bytes
コンパイル時間 3,591 ms
コンパイル使用メモリ 147,396 KB
最終ジャッジ日時 2025-01-11 02:39:21
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <cstdio>
#include <cstring>
#include <iostream>
#include <string>
#include <cmath>
#include <bitset>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <deque>
#include <algorithm>
#include <complex>
#include <unordered_map>
#include <unordered_set>
#include <random>
#include <cassert>
#include <fstream>
#include <utility>
#include <functional>
#include <time.h>
#include <stack>
#include <array>
#define popcount __builtin_popcount
using namespace std;
typedef long long int ll;
typedef pair<int, int> P;
namespace FastFourierTransform {
using real = double;
struct C {
real x, y;
C() : x(0), y(0) {}
C(real x, real y) : x(x), y(y) {}
inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }
inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }
inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); }
inline C conj() const { return C(x, -y); }
};
const real PI = acosl(-1);
int base = 1;
vector< C > rts = { {0, 0},
{1, 0} };
vector< int > rev = {0, 1};
void ensure_base(int nbase) {
if(nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for(int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
while(base < nbase) {
real angle = PI * 2.0 / (1 << (base + 1));
for(int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
real angle_i = angle * (2 * i + 1 - (1 << base));
rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
}
++base;
}
}
void fft(vector< C > &a, int n) {
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for(int i = 0; i < n; i++) {
if(i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for(int k = 1; k < n; k <<= 1) {
for(int i = 0; i < n; i += 2 * k) {
for(int j = 0; j < k; j++) {
C z = a[i + j + k] * rts[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
vector< int64_t > multiply(const vector< int > &a, const vector< int > &b) {
int need = (int) a.size() + (int) b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
vector< C > fa(sz);
for(int i = 0; i < sz; i++) {
int x = (i < (int) a.size() ? a[i] : 0);
int y = (i < (int) b.size() ? b[i] : 0);
fa[i] = C(x, y);
}
fft(fa, sz);
C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
for(int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
fa[i] = z;
}
for(int i = 0; i < (sz >> 1); i++) {
C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
fa[i] = A0 + A1 * s;
}
fft(fa, sz >> 1);
vector< int64_t > ret(need);
for(int i = 0; i < need; i++) {
ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
}
return ret;
}
};
template< int mod >
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
const ll MOD=1e9+9;
using mint = ModInt< MOD >;
template< typename T >
struct ArbitraryModConvolution {
using real = FastFourierTransform::real;
using C = FastFourierTransform::C;
ArbitraryModConvolution() = default;
vector< T > multiply(const vector< T > &a, const vector< T > &b, int need = -1) {
if(need == -1) need = a.size() + b.size() - 1;
int nbase = 0;
while((1 << nbase) < need) nbase++;
FastFourierTransform::ensure_base(nbase);
int sz = 1 << nbase;
vector< C > fa(sz);
for(int i = 0; i < a.size(); i++) {
fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15);
}
fft(fa, sz);
vector< C > fb(sz);
if(a == b) {
fb = fa;
} else {
for(int i = 0; i < b.size(); i++) {
fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15);
}
fft(fb, sz);
}
real ratio = 0.25 / sz;
C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1);
for(int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C a1 = (fa[i] + fa[j].conj());
C a2 = (fa[i] - fa[j].conj()) * r2;
C b1 = (fb[i] + fb[j].conj()) * r3;
C b2 = (fb[i] - fb[j].conj()) * r4;
if(i != j) {
C c1 = (fa[j] + fa[i].conj());
C c2 = (fa[j] - fa[i].conj()) * r2;
C d1 = (fb[j] + fb[i].conj()) * r3;
C d2 = (fb[j] - fb[i].conj()) * r4;
fa[i] = c1 * d1 + c2 * d2 * r5;
fb[i] = c1 * d2 + c2 * d1;
}
fa[j] = a1 * b1 + a2 * b2 * r5;
fb[j] = a1 * b2 + a2 * b1;
}
fft(fa, sz);
fft(fb, sz);
vector< T > ret(need);
for(int i = 0; i < need; i++) {
int64_t aa = llround(fa[i].x);
int64_t bb = llround(fb[i].x);
int64_t cc = llround(fa[i].y);
aa = T(aa).x, bb = T(bb).x, cc = T(cc).x;
ret[i] = aa + (bb << 15) + (cc << 30);
}
return ret;
}
};
ll powmod(ll a, ll k){
ll ap=a, ans=1;
while(k){
if(k&1){
ans*=ap;
ans%=MOD;
}
ap=ap*ap;
ap%=MOD;
k>>=1;
}
return ans;
}
ll inv(ll a){
return powmod(a, MOD-2);
}
ArbitraryModConvolution<mint> fft;
vector<ll> multiply(vector<ll> a, vector<ll> b){
vector<mint> a1(a.size()), b1(b.size());
for(int i=0; i<a.size(); i++) a1[i]=mint(a[i]);
for(int i=0; i<b.size(); i++) b1[i]=mint(b[i]);
auto c1=fft.multiply(a1, b1);
vector<ll> c(c1.size());
for(int i=0; i<c1.size(); i++) c[i]=c1[i].x;
return c;
}
vector<ll> inverse(vector<ll> a){
ll a0=a[0], a0inv=inv(a0);
int n=a.size();
for(int i=0; i<n; i++) (a[i]*=a0inv)%=MOD;
int k=0;
while((1<<k)<n) k++;
vector<ll> b(1, 1);
for(int i=1; i<=k; i++){
vector<ll> a1(1<<i);
for(int j=0; j<min(1<<i, n); j++) a1[j]=a[j];
vector<ll> b1=multiply(b, b);
b1=multiply(b1, a1);
b.resize(1<<i);
for(int j=0; j<(1<<i); j++) b[j]=(2*b[j]-b1[j]+MOD)%MOD;
}
b.resize(n);
for(int i=0; i<n; i++) (b[i]*=a0inv)%=MOD;
return b;
}
vector<ll> log(vector<ll> a){
int n=a.size();
if(n==1){
vector<ll> c(1);
return c;
}
vector<ll> da(n);
for(int i=0; i<n-1; i++) da[i]=a[i+1]*(i+1)%MOD;
vector<ll> b=inverse(a);
vector<ll> c=multiply(da, b);
c.resize(n);
vector<ll> invs(n);
invs[1]=1;
for(int i=2; i<n; i++) invs[i]=MOD-invs[MOD%i]*(MOD/i)%MOD;
for(int i=n-1; i>=1; i--) c[i]=c[i-1]*invs[i]%MOD;
c[0]=0;
return c;
}
vector<ll> exp(vector<ll> a){
int n=a.size();
int k=0;
while((1<<k)<n) k++;
vector<ll> b(1, 1);
for(int i=1; i<=k; i++){
b.resize(1<<i);
vector<ll> b1=log(b);
for(int j=0; j<(1<<i); j++){
b1[j]=MOD-b1[j];
if(b1[j]>=MOD) b1[j]-=MOD;
}
for(int j=0; j<min(n, 1<<i); j++){
b1[j]+=a[j];
if(b1[j]>=MOD) b1[j]-=MOD;
}
b1[0]++;
if(b1[0]>=MOD) b1[0]-=MOD;
b=multiply(b, b1);
}
b.resize(n);
return b;
}
int main()
{
int n;
cin>>n;
const ll I=569522298;
vector<ll> f1(n+1), f2(n+1);
for(ll i=1; i<=n; i++){
f1[i]=(i+1)*(i+1)%MOD*I%MOD;
f2[i]=(MOD-f1[i])%MOD;
}
auto g1=exp(f1), g2=exp(f2);
ll fn=1;
for(int i=1; i<=n; i++) (fn*=i)%=MOD;
for(int i=1; i<=n; i++){
cout<<(g1[i]*(1-I+MOD)+g2[i]*(1+I))%MOD*((MOD+1)/2)%MOD*fn%MOD<<endl;
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0