結果

問題 No.1077 Noelちゃんと星々4
ユーザー Nagisa
提出日時 2020-06-12 22:42:42
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 276 ms / 2,000 ms
コード長 1,576 bytes
コンパイル時間 408 ms
コンパイル使用メモリ 82,360 KB
実行使用メモリ 153,884 KB
最終ジャッジ日時 2024-06-24 05:27:18
合計ジャッジ時間 4,698 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

def getMinimumOps(ar):
# Number of elements in the array
n = len(ar)
# Smallest element in the array
small = min(ar)
# Largest element in the array
large = max(ar)
"""
dp(i, j) represents the minimum number
of operations needed to make the
array[0 .. i] sorted in non-decreasing
order given that ith element is j
"""
dp = [[ 0 for i in range(large + 1)]
for i in range(n)]
# Fill the dp[]][ array for base cases
for j in range(small, large + 1):
dp[0][j] = abs(ar[0] - j)
"""
/*
Using results for the first (i - 1)
elements, calculate the result
for the ith element
*/
"""
for i in range(1, n):
minimum = 10**9
for j in range(small, large + 1):
# """
# /*
# If the ith element is j then we can have
# any value from small to j for the i-1 th
# element
# We choose the one that requires the
# minimum operations
# """
minimum = min(minimum, dp[i - 1][j])
dp[i][j] = minimum + abs(ar[i] - j)
"""
/*
If we made the (n - 1)th element equal to j
we required dp(n-1, j) operations
We choose the minimum among all possible
dp(n-1, j) where j goes from small to large
*/
"""
ans = 10**9
for j in range(small, large + 1):
ans = min(ans, dp[n - 1][j])
return ans
N = int(input())
A = list(map(int,input().split()))
print(getMinimumOps(A))
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0