結果
問題 | No.1080 Strange Squared Score Sum |
ユーザー | haruki_K |
提出日時 | 2020-06-13 02:29:12 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3,501 ms / 5,000 ms |
コード長 | 16,200 bytes |
コンパイル時間 | 3,426 ms |
コンパイル使用メモリ | 201,504 KB |
実行使用メモリ | 13,008 KB |
最終ジャッジ日時 | 2024-06-24 06:18:26 |
合計ジャッジ時間 | 41,549 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 1,658 ms
7,888 KB |
testcase_03 | AC | 3,491 ms
11,884 KB |
testcase_04 | AC | 787 ms
5,600 KB |
testcase_05 | AC | 791 ms
5,824 KB |
testcase_06 | AC | 179 ms
5,376 KB |
testcase_07 | AC | 376 ms
5,376 KB |
testcase_08 | AC | 1,656 ms
7,932 KB |
testcase_09 | AC | 1,663 ms
8,004 KB |
testcase_10 | AC | 179 ms
5,376 KB |
testcase_11 | AC | 3,495 ms
11,860 KB |
testcase_12 | AC | 1,657 ms
7,876 KB |
testcase_13 | AC | 3,495 ms
11,928 KB |
testcase_14 | AC | 1,651 ms
8,028 KB |
testcase_15 | AC | 3 ms
5,376 KB |
testcase_16 | AC | 3,481 ms
13,008 KB |
testcase_17 | AC | 1,663 ms
7,996 KB |
testcase_18 | AC | 1,654 ms
7,996 KB |
testcase_19 | AC | 1,646 ms
7,744 KB |
testcase_20 | AC | 3,501 ms
11,848 KB |
testcase_21 | AC | 3,472 ms
11,720 KB |
ソースコード
// >>> TEMPLATES #include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using i32 = int32_t; using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; #define int ll #define double ld #define rep(i,n) for (int i = 0; i < (int)(n); i++) #define rep1(i,n) for (int i = 1; i <= (int)(n); i++) #define repR(i,n) for (int i = (int)(n)-1; i >= 0; i--) #define rep1R(i,n) for (int i = (int)(n); i >= 1; i--) #define loop(i,a,B) for (int i = a; i B; i++) #define loopR(i,a,B) for (int i = a; i B; i--) #define all(x) (x).begin(), (x).end() #define allR(x) (x).rbegin(), (x).rend() #define pb push_back #define eb emplace_back #define mp make_pair #define fst first #define snd second template <class Int> auto constexpr inf = numeric_limits<Int>::max()/2-1; auto constexpr INF32 = inf<int32_t>; auto constexpr INF64 = inf<int64_t>; auto constexpr INF = inf<int>; #ifdef LOCAL #include "debug.hpp" #define dump(...) cerr << "[" << setw(3) << __LINE__ << ":" << __FUNCTION__ << "] ", dump_impl(#__VA_ARGS__, __VA_ARGS__) #define say(x) cerr << "[" << __LINE__ << ":" << __FUNCTION__ << "] " << x << endl #define debug if (1) #else #define dump(...) (void)(0) #define say(x) (void)(0) #define debug if (0) #endif template <class T> using pque_max = priority_queue<T>; template <class T> using pque_min = priority_queue<T, vector<T>, greater<T> >; template <class T, class = typename T::iterator, class = typename enable_if<!is_same<T, string>::value>::type> ostream& operator<<(ostream& os, T const& v) { bool f = true; for (auto const& x : v) os << (f ? "" : " ") << x, f = false; return os; } template <class T, class = typename T::iterator, class = typename enable_if<!is_same<T, string>::value>::type> istream& operator>>(istream& is, T &v) { for (auto& x : v) is >> x; return is; } template <class T, class S> ostream& operator<<(ostream& os, pair<T,S> const& p) { return os << "(" << p.first << ", " << p.second << ")"; } template <class T, class S> istream& operator>>(istream& is, pair<T,S>& p) { return is >> p.first >> p.second; } struct IOSetup { IOSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } iosetup; template <class F> struct FixPoint : private F { constexpr FixPoint(F&& f) : F(forward<F>(f)) {} template <class... T> constexpr auto operator()(T&&... x) const { return F::operator()(*this, forward<T>(x)...); } }; struct MakeFixPoint { template <class F> constexpr auto operator|(F&& f) const { return FixPoint<F>(forward<F>(f)); } }; #define MFP MakeFixPoint()| #define def(name, ...) auto name = MFP [&](auto &&name, __VA_ARGS__) template <class T, size_t d> struct vec_impl { using type = vector<typename vec_impl<T,d-1>::type>; template <class... U> static type make_v(size_t n, U&&... x) { return type(n, vec_impl<T,d-1>::make_v(forward<U>(x)...)); } }; template <class T> struct vec_impl<T,0> { using type = T; static type make_v(T const& x = {}) { return x; } }; template <class T, size_t d = 1> using vec = typename vec_impl<T,d>::type; template <class T, size_t d = 1, class... Args> auto make_v(Args&&... args) { return vec_impl<T,d>::make_v(forward<Args>(args)...); } template <class T> void quit(T const& x) { cout << x << endl; exit(0); } template <class T, class U> constexpr bool chmin(T& x, U const& y) { if (x > y) { x = y; return true; } return false; } template <class T, class U> constexpr bool chmax(T& x, U const& y) { if (x < y) { x = y; return true; } return false; } template <class It> constexpr auto sumof(It b, It e) { return accumulate(b,e,typename iterator_traits<It>::value_type{}); } template <class T> int sz(T const& x) { return x.size(); } template <class C, class T> int lbd(C const& v, T const& x) { return lower_bound(v.begin(), v.end(), x)-v.begin(); } template <class C, class T> int ubd(C const& v, T const& x) { return upper_bound(v.begin(), v.end(), x)-v.begin(); } template <class C, class F> int ppt(C const& v, F f) { return partition_point(v.begin(), v.end(), f)-v.begin(); } // <<< // >>> FPS template <class NTT> struct FormalPowerSeries : NTT, vector<typename NTT::modint> { using mint = typename NTT::modint; using NTT::conv; using vector<mint>::vector; // inherit constructors using FPS = FormalPowerSeries; FormalPowerSeries() : vector<mint>() {} FormalPowerSeries(vector<mint> const& v) : vector<mint>(v) {} FormalPowerSeries(mint const& x) : vector<mint>({x}) {} mint get(int i) const { assert(i >= 0); if (i < (int)this->size()) return (*this)[i]; else return 0; } bool operator==(FPS const& r) const { const int n = min(this->size(), r.size()); rep (i,n) { if ((*this)[i] != r[i]) return false; } for (int i = n; i < (int)this->size(); ++i) { if ((*this)[i] != mint(0)) return false; } for (int i = n; i < (int)r.size(); ++i) { if (r[i] != mint(0)) return false; } return true; } bool operator!=(FPS const& r) const { return !((*this) == r); } FPS operator+(FPS const& r) const { return FPS(*this) += r; } FPS operator-(FPS const& r) const { return FPS(*this) -= r; } FPS& operator+=(FPS const& r) { if (r.size() > this->size()) this->resize(r.size()); rep (i,r.size()) (*this)[i] += r[i]; return *this; } FPS& operator-=(FPS const& r) { if (r.size() > this->size()) this->resize(r.size()); rep (i,r.size()) (*this)[i] -= r[i]; return *this; } FPS operator*(FPS const& r) const { if (this->empty() || r.empty()) return {}; return conv(*this,r); } FPS& operator*=(FPS const& r) { return *this = *this * r; } friend FPS operator+(mint const& x, FPS const& f) { return FPS{x}+f; } friend FPS operator-(mint const& x, FPS const& f) { return FPS{x}-f; } friend FPS operator*(mint const& x, FPS const& f) { return FPS{x}*f; } friend FPS operator+(FPS const& f, mint const& x) { return f+FPS{x}; } friend FPS operator-(FPS const& f, mint const& x) { return f-FPS{x}; } friend FPS operator*(FPS const& f, mint const& x) { return f*FPS{x}; } FPS take(int sz) const { FPS ret(this->begin(), this->begin() + min<int>(this->size(),sz)); ret.resize(sz); return ret; } FPS inv(int sz = -1) const { assert(this->size()); assert((*this)[0] != mint(0)); if (sz < 0) sz = this->size(); FPS ret = { mint(1)/(*this)[0] }; for (int i = 1; i < sz; i <<= 1) { ret = ret + ret - ret*ret*take(i<<1); ret.resize(i<<1); } ret.resize(sz); return ret; } FPS diff() const { FPS ret(max<int>(0,this->size()-1)); rep (i,ret.size()) ret[i] = (*this)[i+1]*mint(i+1); return ret; } FPS integral() const { FPS ret(this->size()+1); ret[0] = 0; rep (i,this->size()) ret[i+1] = (*this)[i]/mint(i+1); return ret; } FPS log(int sz = -1) const { assert(this->size()); assert((*this)[0] == mint(1)); if (sz < 0) sz = this->size(); return (diff()*inv(sz)).take(sz-1).integral(); } // FPS log(int sz = -1) const { // assert(this->size()); assert((*this)[0] == mint(1)); // if (sz < 0) sz = this->size(); // auto ret = diff()*inv(sz); // ret.resize(sz); // for (int i = sz-1; i > 0; --i) ret[i] = ret[i-1]/mint(i); // ret[0] = 0; // return ret; // } FPS exp(int sz = -1) const { FPS ret = {mint(1)}; if (this->empty()) return ret; assert((*this)[0] == mint(0)); if (sz < 0) sz = this->size(); for (int i = 1; i < sz; i <<= 1) { ret *= take(i<<1) + mint(1) - ret.log(i<<1); ret.resize(i<<1); } ret.resize(sz); return ret; } FPS pow(int64_t k, int sz = -1) const { if (sz < 0) sz = this->size(); int deg = 0; while (deg < sz && (*this)[deg] == mint(0)) ++deg; assert(k >= 0 || deg == 0); auto c = mint(1)/(*this)[deg]; FPS ret(sz-deg); rep (i,sz-deg) ret[i] = (*this)[deg+i]*c; ret = (ret.log()*k).exp() * (*this)[deg].pow(k); ret.resize(sz); for (int i = sz-1; i >= 0; --i) { int j = i-deg*k; ret[i] = (j >= 0 ? ret[j] : mint(0)); } return ret; } mint eval(mint x) const; }; // <<< // >>> NTT template <class ModInt, int64_t g> struct NTT { using modint = ModInt; static constexpr int64_t mod = ModInt::mod, gen = g, max_lg = __builtin_ctzll(mod-1); // mod:prime, g:primitive root static_assert(mod > 0 && g > 0 && max_lg > 0, ""); using arr_t = array<ModInt,max_lg+1>; static arr_t ws,iws; static void init() { static bool built = false; if (built) return; for (int i = 0; i <= max_lg; i++) { ws[i] = -ModInt(g).pow((mod-1)>>(i+2)); iws[i] = ModInt(1)/ws[i]; } built = true; } static void ntt(ModInt a[], int lg) { for (int b = lg-1; b >= 0; b--) { ModInt w = 1; for (int i = 0, k = 0; i < (1<<lg); i += 1<<(b+1)) { for (int j = i; j < (i|(1<<b)); j++) { const int k = j|(1<<b); const auto x = a[j], y = a[k]; a[j] = x + y*w; a[k] = x - y*w; } w *= ws[__builtin_ctz(++k)]; } } // bit_reverse(a,1<<lg); } static void intt(ModInt a[], int lg) { // bit_reverse(a,1<<lg); for (int b = 0; b < lg; b++) { ModInt w = 1; for (int i = 0, k = 0; i < (1<<lg); i += 1<<(b+1)) { for (int j = i; j < (i|(1<<b)); j++) { const int k = j|(1<<b); const auto x = a[j], y = a[k]; a[j] = x + y; a[k] = w*(x - y); } w *= iws[__builtin_ctz(++k)]; } } } template <class T> static vector<ModInt> conv(vector<T> const& a, vector<T> const& b) { if (a.empty() || b.empty()) return {}; init(); const int s = a.size() + b.size() - 1, lg = __lg(2*s-1); assert(lg <= max_lg); vector<ModInt> aa(1<<lg); rep (i,a.size()) aa[i] = (int64_t)a[i]; ntt(aa.data(), lg); vector<ModInt> bb(1<<lg); rep (i,b.size()) bb[i] = (int64_t)b[i]; ntt(bb.data(), lg); const auto x = ModInt(1)/ModInt(1<<lg); rep (i,1<<lg) aa[i] *= bb[i]*x; intt(aa.data(), lg); aa.resize(s); return aa; } template <class T> static vector<ModInt> conv(vector<T> const& a) { if (a.empty()) return {}; init(); const int s = a.size()*2 - 1, lg = __lg(2*s-1); assert(lg <= max_lg); vector<ModInt> aa(1<<lg); rep (i,a.size()) aa[i] = (int64_t)a[i]; ntt(aa.data(), lg); const auto x = ModInt(1)/ModInt(1<<lg); rep (i,1<<lg) aa[i] *= aa[i]*x; intt(aa.data(), lg); aa.resize(s); return aa; } }; template <class ModInt, int64_t g> typename NTT<ModInt,g>::arr_t NTT<ModInt,g>::ws; template <class ModInt, int64_t g> typename NTT<ModInt,g>::arr_t NTT<ModInt,g>::iws; // <<< // >>> modint template <uint32_t MOD> struct modint { using u32 = uint32_t; using u64 = uint64_t; using i64 = int64_t; using M = modint; static constexpr u32 mul_inv(u32 n, int e = 5, u32 x = 1) { return e == 0 ? x : mul_inv(n, e-1, x*(2-x*n)); } static constexpr u32 mod = MOD; static constexpr u32 nn = mul_inv(MOD); static constexpr u32 r2 = -u64(MOD) % MOD; u32 x; constexpr modint(i64 x = 0) : x(reduce(((x%=MOD)<0 ? x+MOD : x)*r2)) {} static constexpr u32 reduce(u64 w) { return u32(w >> 32) + MOD - i64((u64(u32(w) * nn) * MOD) >> 32); } constexpr i64 val() const { i64 r = reduce(x); if (r >= MOD) r -= MOD; return r; } constexpr explicit operator i64() const { return val(); } constexpr bool operator==(M p) const { return val() == p.val(); } constexpr bool operator!=(M p) const { return val() != p.val(); } constexpr M operator+() const { return *this; } constexpr M operator-() const { M r; r.x = x ? i64(2*MOD)-x : 0; return r; } constexpr M &operator+=(M p) { i64 t = x; if (((t += p.x) -= 2*MOD) < 0) t += 2*MOD; x = t; return *this; } constexpr M &operator-=(M p) { return *this += -p; } constexpr M &operator*=(M p) { x = reduce(u64(x)*p.x); return *this; } constexpr M &operator/=(M p) { *this *= p.inv(); return *this; } constexpr M operator+(M p) const { return M(*this) += p; } constexpr M operator-(M p) const { return M(*this) -= p; } constexpr M operator*(M p) const { return M(*this) *= p; } constexpr M operator/(M p) const { return M(*this) /= p; } friend constexpr M operator+(i64 x, M y) { return M(x)+y; } friend constexpr M operator-(i64 x, M y) { return M(x)-y; } friend constexpr M operator*(i64 x, M y) { return M(x)*y; } friend constexpr M operator/(i64 x, M y) { return M(x)/y; } constexpr M inv() const { return pow(MOD - 2); } constexpr M pow(i64 n) const { if (n < 0) return inv().pow(-n); M v = *this, r = 1; for (; n > 0; n >>= 1, v *= v) if (n&1) r *= v; return r; } friend ostream &operator<<(ostream &os, M p) { return os << p.val(); } friend istream &operator>>(istream &is, M &a) { u32 t; is >> t; a = t; return is; } #ifdef LOCAL friend string to_s(M p) { return to_s(p.val(), MOD); } #endif }; // <<< // >>> garner, convolution for arbitray mod template <class ModInt> struct NTT_arb_mod { using modint = ModInt; using ntt1 = NTT<::modint< 167772161>, 3>; // mod-1 = 5<<25 using ntt2 = NTT<::modint< 469762049>, 3>; // mod-1 = 7<<26 using ntt3 = NTT<::modint<1224736769>, 3>; // mod-1 = 73<<24 //using ntt3 = NTT<modint<998244353>, 3>; // mod-1 = 119<<23 // https://math314.hateblo.jp/entry/2015/05/07/014908 static constexpr ModInt garner(ntt1::modint x, ntt2::modint y, ntt3::modint z) { using ll = int64_t; const ll xx = (ll)x, yy = (ll)y, zz = (ll)z; constexpr ll m1 = ntt1::mod, m2 = ntt2::mod; constexpr auto m1_inv_m2 = ntt2::modint(m1).inv(); constexpr auto m12_inv_m3 = ntt3::modint(m1 * m2).inv(); constexpr auto m12_mod = ModInt(m1 * m2); auto v1 = (yy - xx) * m1_inv_m2; auto v2 = (zz - (xx + m1 * v1.val())) * m12_inv_m3; return xx + m1 * v1.val() + m12_mod * ModInt(v2.val()); } static vector<ModInt> conv(vector<ModInt> const& a, vector<ModInt> const& b) { auto x = ntt1::conv(a, b); auto y = ntt2::conv(a, b); auto z = ntt3::conv(a, b); vector<ModInt> ret(x.size()); rep (i,x.size()) ret[i] = garner(x[i],y[i],z[i]); return ret; } static vector<ModInt> conv(vector<ModInt> const& a) { auto x = ntt1::conv(a); auto y = ntt2::conv(a); auto z = ntt3::conv(a); vector<ModInt> ret(x.size()); rep (i,x.size()) ret[i] = garner(x[i],y[i],z[i]); return ret; } }; // <<< constexpr int64_t MOD = 1e9+9; using mint = modint<MOD>; //using FPS = FormalPowerSeries<NTT<mint,3>>; using FPS = FormalPowerSeries<NTT_arb_mod<mint>>; const mint I = mint(13).pow((MOD-1)/4); int32_t main() { int n; cin >> n; mint fact = 1; rep1 (i,n) fact *= i; FPS f_plus(n+1), f_minus(n+1); rep1 (i,n) f_plus[i] = (i+1)*(i+1)*I; rep1 (i,n) f_minus[i] = (i+1)*(i+1)*(-I); f_plus = f_plus.exp(); f_minus = f_minus.exp(); auto real = (f_plus + f_minus) * mint(2).inv(); auto imag = (f_plus - f_minus) * mint(2*I).inv(); auto ans = (real + imag) * fact; dump(ans); rep1 (k,n) cout << ans[k] << "\n"; }