結果

問題 No.1080 Strange Squared Score Sum
ユーザー haruki_K
提出日時 2020-06-13 02:29:12
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 3,501 ms / 5,000 ms
コード長 16,200 bytes
コンパイル時間 3,426 ms
コンパイル使用メモリ 201,504 KB
実行使用メモリ 13,008 KB
最終ジャッジ日時 2024-06-24 06:18:26
合計ジャッジ時間 41,549 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// >>> TEMPLATES
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
#define int ll
#define double ld
#define rep(i,n) for (int i = 0; i < (int)(n); i++)
#define rep1(i,n) for (int i = 1; i <= (int)(n); i++)
#define repR(i,n) for (int i = (int)(n)-1; i >= 0; i--)
#define rep1R(i,n) for (int i = (int)(n); i >= 1; i--)
#define loop(i,a,B) for (int i = a; i B; i++)
#define loopR(i,a,B) for (int i = a; i B; i--)
#define all(x) (x).begin(), (x).end()
#define allR(x) (x).rbegin(), (x).rend()
#define pb push_back
#define eb emplace_back
#define mp make_pair
#define fst first
#define snd second
template <class Int> auto constexpr inf = numeric_limits<Int>::max()/2-1;
auto constexpr INF32 = inf<int32_t>;
auto constexpr INF64 = inf<int64_t>;
auto constexpr INF = inf<int>;
#ifdef LOCAL
#include "debug.hpp"
#define dump(...) cerr << "[" << setw(3) << __LINE__ << ":" << __FUNCTION__ << "] ", dump_impl(#__VA_ARGS__, __VA_ARGS__)
#define say(x) cerr << "[" << __LINE__ << ":" << __FUNCTION__ << "] " << x << endl
#define debug if (1)
#else
#define dump(...) (void)(0)
#define say(x) (void)(0)
#define debug if (0)
#endif
template <class T> using pque_max = priority_queue<T>;
template <class T> using pque_min = priority_queue<T, vector<T>, greater<T> >;
template <class T, class = typename T::iterator, class = typename enable_if<!is_same<T, string>::value>::type>
ostream& operator<<(ostream& os, T const& v) { bool f = true; for (auto const& x : v) os << (f ? "" : " ") << x, f = false; return os; }
template <class T, class = typename T::iterator, class = typename enable_if<!is_same<T, string>::value>::type>
istream& operator>>(istream& is, T &v) { for (auto& x : v) is >> x; return is; }
template <class T, class S> ostream& operator<<(ostream& os, pair<T,S> const& p) { return os << "(" << p.first << ", " << p.second << ")"; }
template <class T, class S> istream& operator>>(istream& is, pair<T,S>& p) { return is >> p.first >> p.second; }
struct IOSetup { IOSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } iosetup;
template <class F> struct FixPoint : private F {
constexpr FixPoint(F&& f) : F(forward<F>(f)) {}
template <class... T> constexpr auto operator()(T&&... x) const { return F::operator()(*this, forward<T>(x)...); }
};
struct MakeFixPoint {
template <class F> constexpr auto operator|(F&& f) const { return FixPoint<F>(forward<F>(f)); }
};
#define MFP MakeFixPoint()|
#define def(name, ...) auto name = MFP [&](auto &&name, __VA_ARGS__)
template <class T, size_t d> struct vec_impl {
using type = vector<typename vec_impl<T,d-1>::type>;
template <class... U> static type make_v(size_t n, U&&... x) { return type(n, vec_impl<T,d-1>::make_v(forward<U>(x)...)); }
};
template <class T> struct vec_impl<T,0> { using type = T; static type make_v(T const& x = {}) { return x; } };
template <class T, size_t d = 1> using vec = typename vec_impl<T,d>::type;
template <class T, size_t d = 1, class... Args> auto make_v(Args&&... args) { return vec_impl<T,d>::make_v(forward<Args>(args)...); }
template <class T> void quit(T const& x) { cout << x << endl; exit(0); }
template <class T, class U> constexpr bool chmin(T& x, U const& y) { if (x > y) { x = y; return true; } return false; }
template <class T, class U> constexpr bool chmax(T& x, U const& y) { if (x < y) { x = y; return true; } return false; }
template <class It> constexpr auto sumof(It b, It e) { return accumulate(b,e,typename iterator_traits<It>::value_type{}); }
template <class T> int sz(T const& x) { return x.size(); }
template <class C, class T> int lbd(C const& v, T const& x) {
return lower_bound(v.begin(), v.end(), x)-v.begin();
}
template <class C, class T> int ubd(C const& v, T const& x) {
return upper_bound(v.begin(), v.end(), x)-v.begin();
}
template <class C, class F> int ppt(C const& v, F f) {
return partition_point(v.begin(), v.end(), f)-v.begin();
}
// <<<
// >>> FPS
template <class NTT>
struct FormalPowerSeries : NTT, vector<typename NTT::modint> {
using mint = typename NTT::modint;
using NTT::conv;
using vector<mint>::vector; // inherit constructors
using FPS = FormalPowerSeries;
FormalPowerSeries() : vector<mint>() {}
FormalPowerSeries(vector<mint> const& v) : vector<mint>(v) {}
FormalPowerSeries(mint const& x) : vector<mint>({x}) {}
mint get(int i) const {
assert(i >= 0);
if (i < (int)this->size()) return (*this)[i];
else return 0;
}
bool operator==(FPS const& r) const {
const int n = min(this->size(), r.size());
rep (i,n) {
if ((*this)[i] != r[i]) return false;
}
for (int i = n; i < (int)this->size(); ++i) {
if ((*this)[i] != mint(0)) return false;
}
for (int i = n; i < (int)r.size(); ++i) {
if (r[i] != mint(0)) return false;
}
return true;
}
bool operator!=(FPS const& r) const {
return !((*this) == r);
}
FPS operator+(FPS const& r) const { return FPS(*this) += r; }
FPS operator-(FPS const& r) const { return FPS(*this) -= r; }
FPS& operator+=(FPS const& r) {
if (r.size() > this->size()) this->resize(r.size());
rep (i,r.size()) (*this)[i] += r[i];
return *this;
}
FPS& operator-=(FPS const& r) {
if (r.size() > this->size()) this->resize(r.size());
rep (i,r.size()) (*this)[i] -= r[i];
return *this;
}
FPS operator*(FPS const& r) const {
if (this->empty() || r.empty()) return {};
return conv(*this,r);
}
FPS& operator*=(FPS const& r) { return *this = *this * r; }
friend FPS operator+(mint const& x, FPS const& f) { return FPS{x}+f; }
friend FPS operator-(mint const& x, FPS const& f) { return FPS{x}-f; }
friend FPS operator*(mint const& x, FPS const& f) { return FPS{x}*f; }
friend FPS operator+(FPS const& f, mint const& x) { return f+FPS{x}; }
friend FPS operator-(FPS const& f, mint const& x) { return f-FPS{x}; }
friend FPS operator*(FPS const& f, mint const& x) { return f*FPS{x}; }
FPS take(int sz) const {
FPS ret(this->begin(), this->begin() + min<int>(this->size(),sz));
ret.resize(sz);
return ret;
}
FPS inv(int sz = -1) const {
assert(this->size()); assert((*this)[0] != mint(0));
if (sz < 0) sz = this->size();
FPS ret = { mint(1)/(*this)[0] };
for (int i = 1; i < sz; i <<= 1) {
ret = ret + ret - ret*ret*take(i<<1);
ret.resize(i<<1);
}
ret.resize(sz);
return ret;
}
FPS diff() const {
FPS ret(max<int>(0,this->size()-1));
rep (i,ret.size()) ret[i] = (*this)[i+1]*mint(i+1);
return ret;
}
FPS integral() const {
FPS ret(this->size()+1);
ret[0] = 0;
rep (i,this->size()) ret[i+1] = (*this)[i]/mint(i+1);
return ret;
}
FPS log(int sz = -1) const {
assert(this->size()); assert((*this)[0] == mint(1));
if (sz < 0) sz = this->size();
return (diff()*inv(sz)).take(sz-1).integral();
}
// FPS log(int sz = -1) const {
// assert(this->size()); assert((*this)[0] == mint(1));
// if (sz < 0) sz = this->size();
// auto ret = diff()*inv(sz);
// ret.resize(sz);
// for (int i = sz-1; i > 0; --i) ret[i] = ret[i-1]/mint(i);
// ret[0] = 0;
// return ret;
// }
FPS exp(int sz = -1) const {
FPS ret = {mint(1)};
if (this->empty()) return ret;
assert((*this)[0] == mint(0));
if (sz < 0) sz = this->size();
for (int i = 1; i < sz; i <<= 1) {
ret *= take(i<<1) + mint(1) - ret.log(i<<1);
ret.resize(i<<1);
}
ret.resize(sz);
return ret;
}
FPS pow(int64_t k, int sz = -1) const {
if (sz < 0) sz = this->size();
int deg = 0;
while (deg < sz && (*this)[deg] == mint(0)) ++deg;
assert(k >= 0 || deg == 0);
auto c = mint(1)/(*this)[deg];
FPS ret(sz-deg);
rep (i,sz-deg) ret[i] = (*this)[deg+i]*c;
ret = (ret.log()*k).exp() * (*this)[deg].pow(k);
ret.resize(sz);
for (int i = sz-1; i >= 0; --i) {
int j = i-deg*k;
ret[i] = (j >= 0 ? ret[j] : mint(0));
}
return ret;
}
mint eval(mint x) const;
};
// <<<
// >>> NTT
template <class ModInt, int64_t g>
struct NTT {
using modint = ModInt;
static constexpr int64_t mod = ModInt::mod, gen = g, max_lg = __builtin_ctzll(mod-1);
// mod:prime, g:primitive root
static_assert(mod > 0 && g > 0 && max_lg > 0, "");
using arr_t = array<ModInt,max_lg+1>;
static arr_t ws,iws;
static void init() {
static bool built = false;
if (built) return;
for (int i = 0; i <= max_lg; i++) {
ws[i] = -ModInt(g).pow((mod-1)>>(i+2));
iws[i] = ModInt(1)/ws[i];
}
built = true;
}
static void ntt(ModInt a[], int lg) {
for (int b = lg-1; b >= 0; b--) {
ModInt w = 1;
for (int i = 0, k = 0; i < (1<<lg); i += 1<<(b+1)) {
for (int j = i; j < (i|(1<<b)); j++) {
const int k = j|(1<<b);
const auto x = a[j], y = a[k];
a[j] = x + y*w;
a[k] = x - y*w;
}
w *= ws[__builtin_ctz(++k)];
}
}
// bit_reverse(a,1<<lg);
}
static void intt(ModInt a[], int lg) {
// bit_reverse(a,1<<lg);
for (int b = 0; b < lg; b++) {
ModInt w = 1;
for (int i = 0, k = 0; i < (1<<lg); i += 1<<(b+1)) {
for (int j = i; j < (i|(1<<b)); j++) {
const int k = j|(1<<b);
const auto x = a[j], y = a[k];
a[j] = x + y;
a[k] = w*(x - y);
}
w *= iws[__builtin_ctz(++k)];
}
}
}
template <class T>
static vector<ModInt> conv(vector<T> const& a, vector<T> const& b) {
if (a.empty() || b.empty()) return {};
init();
const int s = a.size() + b.size() - 1, lg = __lg(2*s-1);
assert(lg <= max_lg);
vector<ModInt> aa(1<<lg);
rep (i,a.size()) aa[i] = (int64_t)a[i];
ntt(aa.data(), lg);
vector<ModInt> bb(1<<lg);
rep (i,b.size()) bb[i] = (int64_t)b[i];
ntt(bb.data(), lg);
const auto x = ModInt(1)/ModInt(1<<lg);
rep (i,1<<lg) aa[i] *= bb[i]*x;
intt(aa.data(), lg); aa.resize(s);
return aa;
}
template <class T>
static vector<ModInt> conv(vector<T> const& a) {
if (a.empty()) return {};
init();
const int s = a.size()*2 - 1, lg = __lg(2*s-1);
assert(lg <= max_lg);
vector<ModInt> aa(1<<lg);
rep (i,a.size()) aa[i] = (int64_t)a[i];
ntt(aa.data(), lg);
const auto x = ModInt(1)/ModInt(1<<lg);
rep (i,1<<lg) aa[i] *= aa[i]*x;
intt(aa.data(), lg); aa.resize(s);
return aa;
}
};
template <class ModInt, int64_t g>
typename NTT<ModInt,g>::arr_t NTT<ModInt,g>::ws;
template <class ModInt, int64_t g>
typename NTT<ModInt,g>::arr_t NTT<ModInt,g>::iws;
// <<<
// >>> modint
template <uint32_t MOD>
struct modint {
using u32 = uint32_t;
using u64 = uint64_t;
using i64 = int64_t;
using M = modint;
static constexpr u32 mul_inv(u32 n, int e = 5, u32 x = 1) {
return e == 0 ? x : mul_inv(n, e-1, x*(2-x*n));
}
static constexpr u32 mod = MOD;
static constexpr u32 nn = mul_inv(MOD);
static constexpr u32 r2 = -u64(MOD) % MOD;
u32 x;
constexpr modint(i64 x = 0) : x(reduce(((x%=MOD)<0 ? x+MOD : x)*r2)) {}
static constexpr u32 reduce(u64 w) {
return u32(w >> 32) + MOD - i64((u64(u32(w) * nn) * MOD) >> 32);
}
constexpr i64 val() const {
i64 r = reduce(x);
if (r >= MOD) r -= MOD;
return r;
}
constexpr explicit operator i64() const { return val(); }
constexpr bool operator==(M p) const { return val() == p.val(); }
constexpr bool operator!=(M p) const { return val() != p.val(); }
constexpr M operator+() const { return *this; }
constexpr M operator-() const { M r; r.x = x ? i64(2*MOD)-x : 0; return r; }
constexpr M &operator+=(M p) {
i64 t = x; if (((t += p.x) -= 2*MOD) < 0) t += 2*MOD;
x = t;
return *this;
}
constexpr M &operator-=(M p) { return *this += -p; }
constexpr M &operator*=(M p) { x = reduce(u64(x)*p.x); return *this; }
constexpr M &operator/=(M p) { *this *= p.inv(); return *this; }
constexpr M operator+(M p) const { return M(*this) += p; }
constexpr M operator-(M p) const { return M(*this) -= p; }
constexpr M operator*(M p) const { return M(*this) *= p; }
constexpr M operator/(M p) const { return M(*this) /= p; }
friend constexpr M operator+(i64 x, M y) { return M(x)+y; }
friend constexpr M operator-(i64 x, M y) { return M(x)-y; }
friend constexpr M operator*(i64 x, M y) { return M(x)*y; }
friend constexpr M operator/(i64 x, M y) { return M(x)/y; }
constexpr M inv() const { return pow(MOD - 2); }
constexpr M pow(i64 n) const {
if (n < 0) return inv().pow(-n);
M v = *this, r = 1;
for (; n > 0; n >>= 1, v *= v) if (n&1) r *= v;
return r;
}
friend ostream &operator<<(ostream &os, M p) {
return os << p.val();
}
friend istream &operator>>(istream &is, M &a) {
u32 t; is >> t; a = t; return is;
}
#ifdef LOCAL
friend string to_s(M p) { return to_s(p.val(), MOD); }
#endif
};
// <<<
// >>> garner, convolution for arbitray mod
template <class ModInt>
struct NTT_arb_mod {
using modint = ModInt;
using ntt1 = NTT<::modint< 167772161>, 3>; // mod-1 = 5<<25
using ntt2 = NTT<::modint< 469762049>, 3>; // mod-1 = 7<<26
using ntt3 = NTT<::modint<1224736769>, 3>; // mod-1 = 73<<24
//using ntt3 = NTT<modint<998244353>, 3>; // mod-1 = 119<<23
// https://math314.hateblo.jp/entry/2015/05/07/014908
static constexpr ModInt garner(ntt1::modint x, ntt2::modint y, ntt3::modint z) {
using ll = int64_t;
const ll xx = (ll)x, yy = (ll)y, zz = (ll)z;
constexpr ll m1 = ntt1::mod, m2 = ntt2::mod;
constexpr auto m1_inv_m2 = ntt2::modint(m1).inv();
constexpr auto m12_inv_m3 = ntt3::modint(m1 * m2).inv();
constexpr auto m12_mod = ModInt(m1 * m2);
auto v1 = (yy - xx) * m1_inv_m2;
auto v2 = (zz - (xx + m1 * v1.val())) * m12_inv_m3;
return xx + m1 * v1.val() + m12_mod * ModInt(v2.val());
}
static vector<ModInt> conv(vector<ModInt> const& a, vector<ModInt> const& b) {
auto x = ntt1::conv(a, b);
auto y = ntt2::conv(a, b);
auto z = ntt3::conv(a, b);
vector<ModInt> ret(x.size());
rep (i,x.size()) ret[i] = garner(x[i],y[i],z[i]);
return ret;
}
static vector<ModInt> conv(vector<ModInt> const& a) {
auto x = ntt1::conv(a);
auto y = ntt2::conv(a);
auto z = ntt3::conv(a);
vector<ModInt> ret(x.size());
rep (i,x.size()) ret[i] = garner(x[i],y[i],z[i]);
return ret;
}
};
// <<<
constexpr int64_t MOD = 1e9+9;
using mint = modint<MOD>;
//using FPS = FormalPowerSeries<NTT<mint,3>>;
using FPS = FormalPowerSeries<NTT_arb_mod<mint>>;
const mint I = mint(13).pow((MOD-1)/4);
int32_t main() {
int n; cin >> n;
mint fact = 1;
rep1 (i,n) fact *= i;
FPS f_plus(n+1), f_minus(n+1);
rep1 (i,n) f_plus[i] = (i+1)*(i+1)*I;
rep1 (i,n) f_minus[i] = (i+1)*(i+1)*(-I);
f_plus = f_plus.exp();
f_minus = f_minus.exp();
auto real = (f_plus + f_minus) * mint(2).inv();
auto imag = (f_plus - f_minus) * mint(2*I).inv();
auto ans = (real + imag) * fact;
dump(ans);
rep1 (k,n) cout << ans[k] << "\n";
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0