結果
問題 | No.1080 Strange Squared Score Sum |
ユーザー | hitonanode |
提出日時 | 2020-06-13 05:16:45 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 15,765 bytes |
コンパイル時間 | 3,863 ms |
コンパイル使用メモリ | 249,628 KB |
実行使用メモリ | 19,640 KB |
最終ジャッジ日時 | 2024-06-24 09:22:08 |
合計ジャッジ時間 | 69,048 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,376 KB |
testcase_02 | AC | 2,575 ms
11,484 KB |
testcase_03 | TLE | - |
testcase_04 | AC | 1,261 ms
7,516 KB |
testcase_05 | AC | 1,273 ms
7,408 KB |
testcase_06 | AC | 310 ms
5,376 KB |
testcase_07 | AC | 623 ms
5,376 KB |
testcase_08 | AC | 2,577 ms
11,808 KB |
testcase_09 | AC | 2,564 ms
10,952 KB |
testcase_10 | AC | 309 ms
5,376 KB |
testcase_11 | TLE | - |
testcase_12 | AC | 2,550 ms
10,940 KB |
testcase_13 | TLE | - |
testcase_14 | AC | 2,551 ms
11,240 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
testcase_19 | TLE | - |
testcase_20 | TLE | - |
testcase_21 | TLE | - |
ソースコード
#include <bits/stdc++.h> using namespace std; using lint = long long int; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); } template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); } template<typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; } template<typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; } template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; } template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; } template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; } template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; } template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } #define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl; /* #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/tag_and_trait.hpp> using namespace __gnu_pbds; // find_by_order(), order_of_key() template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>; template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>; */ template <int mod> struct ModInt { using lint = long long; static int get_mod() { return mod; } static int get_primitive_root() { static int primitive_root = 0; if (!primitive_root) { primitive_root = [&](){ std::set<int> fac; int v = mod - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < mod; g++) { bool ok = true; for (auto i : fac) if (ModInt(g).power((mod - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } int val; constexpr ModInt() : val(0) {} constexpr ModInt &_setval(lint v) { val = (v >= mod ? v - mod : v); return *this; } constexpr ModInt(lint v) { _setval(v % mod + mod); } explicit operator bool() const { return val != 0; } constexpr ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); } constexpr ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); } constexpr ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); } constexpr ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); } constexpr ModInt operator-() const { return ModInt()._setval(mod - val); } constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; } constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; } constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; } constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; } friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); } friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); } friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); } friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); } constexpr bool operator==(const ModInt &x) const { return val == x.val; } constexpr bool operator!=(const ModInt &x) const { return val != x.val; } bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map<ModInt, T> friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; is >> t; x = ModInt(t); return is; } friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { os << x.val; return os; } constexpr lint power(lint n) const { lint ans = 1, tmp = this->val; while (n) { if (n & 1) ans = ans * tmp % mod; tmp = tmp * tmp % mod; n /= 2; } return ans; } constexpr lint inv() const { return this->power(mod - 2); } constexpr ModInt operator^(lint n) const { return ModInt(this->power(n)); } constexpr ModInt &operator^=(lint n) { return *this = *this ^ n; } inline ModInt fac() const { static std::vector<ModInt> facs; int l0 = facs.size(); if (l0 > this->val) return facs[this->val]; facs.resize(this->val + 1); for (int i = l0; i <= this->val; i++) facs[i] = (i == 0 ? ModInt(1) : facs[i - 1] * ModInt(i)); return facs[this->val]; } ModInt doublefac() const { lint k = (this->val + 1) / 2; if (this->val & 1) return ModInt(k * 2).fac() / ModInt(2).power(k) / ModInt(k).fac(); else return ModInt(k).fac() * ModInt(2).power(k); } ModInt nCr(const ModInt &r) const { if (this->val < r.val) return ModInt(0); return this->fac() / ((*this - r).fac() * r.fac()); } ModInt sqrt() const { if (val == 0) return 0; if (mod == 2) return val; if (power((mod - 1) / 2) != 1) return 0; ModInt b = 1; while (b.power((mod - 1) / 2) == 1) b += 1; int e = 0, m = mod - 1; while (m % 2 == 0) m >>= 1, e++; ModInt x = power((m - 1) / 2), y = (*this) * x * x; x *= (*this); ModInt z = b.power(m); while (y != 1) { int j = 0; ModInt t = y; while (t != 1) j++, t *= t; z = z.power(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return ModInt(std::min(x.val, mod - x.val)); } }; using mint = ModInt<1000000009>; // Integer convolution for arbitrary mod // with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class. // We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`. // input: a (size: n), b (size: m) // return: vector (size: n + m - 1) template <typename MODINT> vector<MODINT> nttconv(vector<MODINT> a, vector<MODINT> b, bool skip_garner = false); constexpr int nttprimes[3] = {998244353, 167772161, 469762049}; // Integer FFT (Fast Fourier Transform) for ModInt class // (Also known as Number Theoretic Transform, NTT) // is_inverse: inverse transform // ** Input size must be 2^n ** // template <typename MODINT> // void ntt(vector<MODINT> &a, bool is_inverse = false) // { // int n = a.size(); // assert(__builtin_popcount(n) == 1); // MODINT h = MODINT(MODINT::get_primitive_root()).power((MODINT::get_mod() - 1) / n); // if (is_inverse) h = 1 / h; // int i = 0; // for (int j = 1; j < n - 1; j++) { // for (int k = n >> 1; k > (i ^= k); k >>= 1); // if (j < i) swap(a[i], a[j]); // } // for (int m = 1; m < n; m *= 2) { // int m2 = 2 * m; // MODINT base = h.power(n / m2), w = 1; // for (int x = 0; x < m; x++) { // for (int s = x; s < n; s += m2) { // MODINT u = a[s], d = a[s + m] * w; // a[s] = u + d, a[s + m] = u - d; // } // w *= base; // } // } // if (is_inverse) { // long long int n_inv = MODINT(n).inv(); // for (auto &v : a) v *= n_inv; // } // } // from <https://yukicoder.me/submissions/496207> template <class T> void ntt(vector<T> &a, bool inverse) { int n = size(a); assert((n & (n - 1)) == 0); if(n < 2) return; assert((T::get_mod() - 1) % n == 0); static vector<T> w{1}, iw{1}; for(int m = size(w); m < n / 2; m *= 2) { static T root = T::get_primitive_root(); T dw = root.power((T::get_mod() - 1) / (4 * m)), idw = 1 / dw; w.resize(2 * m), iw.resize(2 * m); for(int i = 0; i < m; ++i) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * idw; } if(not inverse) { for(int m = n; m >>= 1;) { for(int s = 0, k = 0; s < n; s += 2 * m, ++k) { for(int i = s, j = s + m; i < s + m; ++i, ++j) { T x = a[i], y = a[j] * w[k]; a[i] = x + y, a[j] = x - y; } } } } else { for(int m = 1; m < n; m *= 2) { for(int s = 0, k = 0; s < n; s += 2 * m, ++k) { for(int i = s, j = s + m; i < s + m; ++i, ++j) { T x = a[i], y = a[j]; a[i] = x + y, a[j] = (x - y) * iw[k]; } } } auto inv = 1 / T(n); for(auto &&e : a) e *= inv; } } template<int MOD> vector<ModInt<MOD>> nttconv_(const vector<int> &a, const vector<int> &b) { int sz = a.size(); assert(a.size() == b.size() and __builtin_popcount(sz) == 1); vector<ModInt<MOD>> ap(sz), bp(sz); for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i]; if (a == b) { ntt(ap, false); bp = ap; } else { ntt(ap, false); ntt(bp, false); } for (int i = 0; i < sz; i++) ap[i] *= bp[i]; ntt(ap, true); return ap; } long long int extgcd_ntt_(long long int a, long long int b, long long int &x, long long int &y) { long long int d = a; if (b != 0) d = extgcd_ntt_(b, a % b, y, x), y -= (a / b) * x; else x = 1, y = 0; return d; } long long int modinv_ntt_(long long int a, long long int m) { long long int x, y; extgcd_ntt_(a, m, x, y); return (m + x % m) % m; } long long int garner_ntt_(int r0, int r1, int r2, int mod) { array<long long int, 4> rs = {r0, r1, r2, 0}; vector<long long int> coffs(4, 1), constants(4, 0); for (int i = 0; i < 3; i++) { long long int v = (rs[i] - constants[i]) * modinv_ntt_(coffs[i], nttprimes[i]) % nttprimes[i]; if (v < 0) v += nttprimes[i]; for (int j = i + 1; j < 4; j++) { (constants[j] += coffs[j] * v) %= (j < 3 ? nttprimes[j] : mod); (coffs[j] *= nttprimes[i]) %= (j < 3 ? nttprimes[j] : mod); } } return constants.back(); } template <typename MODINT> vector<MODINT> nttconv(vector<MODINT> a, vector<MODINT> b, bool skip_garner) { int sz = 1, n = a.size(), m = b.size(); while (sz < n + m) sz <<= 1; if (sz <= 16) { vector<MODINT> ret(n + m - 1); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j]; } return ret; } int mod = MODINT::get_mod(); if (skip_garner or find(begin(nttprimes), end(nttprimes), mod) != end(nttprimes)) { a.resize(sz), b.resize(sz); if (a == b) { ntt(a, false); b = a; } else ntt(a, false), ntt(b, false); for (int i = 0; i < sz; i++) a[i] *= b[i]; ntt(a, true); a.resize(n + m - 1); } else { vector<int> ai(sz), bi(sz); for (int i = 0; i < n; i++) ai[i] = a[i].val; for (int i = 0; i < m; i++) bi[i] = b[i].val; auto ntt0 = nttconv_<nttprimes[0]>(ai, bi); auto ntt1 = nttconv_<nttprimes[1]>(ai, bi); auto ntt2 = nttconv_<nttprimes[2]>(ai, bi); a.resize(n + m - 1); for (int i = 0; i < n + m - 1; i++) { a[i] = garner_ntt_(ntt0[i].val, ntt1[i].val, ntt2[i].val, mod); } } return a; } template <typename T> std::vector<T> inv(const std::vector<T> &f) { assert(f.size() and f[0] != T(0)); // Requirement: F(0) != 0 std::vector<T> ret({T(1) / f[0]}); while (ret.size() < f.size()) { std::vector<T> tmp(f.begin(), f.begin() + std::min(f.size(), ret.size() * 2)); tmp = nttconv(tmp, nttconv(ret, ret)); ret.resize(2 * ret.size()); for (int i = ret.size() / 2; i < ret.size(); i++) ret[i] = -tmp[i]; } ret.resize(f.size()); return ret; } template <typename T> std::vector<T> differential(std::vector<T> f) { for (int i = 0; i + 1 < f.size(); i++) f[i] = f[i + 1] * (i + 1); if (f.size()) f.back() = 0; return f; } template <typename T> std::vector<T> integral(std::vector<T> f) { // f.emplace_back(0); for (int i = f.size() - 1; i; i--) f[i] = f[i - 1] / i; f[0] = 0; return f; } template <typename T> std::vector<T> log(const std::vector<T> &f) { assert(f.size() and f[0] == T(1)); // Requirement: F(0) = 1 auto g = nttconv(differential(f), inv(f)); g.resize(f.size()); return integral(g); } template <typename T> std::vector<T> exp(const std::vector<T> &f) { assert(f.empty() or f[0] == T(0)); // Requirement: F(0) = 0 std::vector<T> ret({T(1)}); while (ret.size() < f.size()) { int k = ret.size(); std::vector<T> g(f.begin(), f.begin() + min<int>(k * 2, f.size())); g.resize(k * 2); g[0] += 1; auto rlog = ret; rlog.resize(k * 2); rlog = log(rlog); for (int i = 0; i < min(rlog.size(), g.size()); i++) g[i] -= rlog[i]; ret = nttconv(ret, g); ret.resize(k * 2); } ret.resize(f.size()); return ret; } int main() { mint j = mint(-1).sqrt(); int N; cin >> N; vector<mint> f0(N + 10); FOR(i, 1, f0.size()) f0[i] = 1LL * (i + 1) * (i + 1); auto f0a = f0, f0b = f0; for (auto &x : f0a) x *= j; for (auto &x : f0b) x *= -j; f0a = exp(f0a); f0b = exp(f0b); mint ret = mint(N).fac(); FOR(K, 1, N + 1) { mint r = (f0a[K] - f0b[K]) / (2 * j) + (f0a[K] + f0b[K]) / 2; cout << r * ret << '\n'; } }