結果

問題 No.1080 Strange Squared Score Sum
ユーザー hitonanodehitonanode
提出日時 2020-06-13 05:16:45
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 15,765 bytes
コンパイル時間 3,863 ms
コンパイル使用メモリ 249,628 KB
実行使用メモリ 19,640 KB
最終ジャッジ日時 2024-06-24 09:22:08
合計ジャッジ時間 69,048 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 3 ms
5,376 KB
testcase_02 AC 2,575 ms
11,484 KB
testcase_03 TLE -
testcase_04 AC 1,261 ms
7,516 KB
testcase_05 AC 1,273 ms
7,408 KB
testcase_06 AC 310 ms
5,376 KB
testcase_07 AC 623 ms
5,376 KB
testcase_08 AC 2,577 ms
11,808 KB
testcase_09 AC 2,564 ms
10,952 KB
testcase_10 AC 309 ms
5,376 KB
testcase_11 TLE -
testcase_12 AC 2,550 ms
10,940 KB
testcase_13 TLE -
testcase_14 AC 2,551 ms
11,240 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 TLE -
testcase_17 TLE -
testcase_18 TLE -
testcase_19 TLE -
testcase_20 TLE -
testcase_21 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using lint = long long int;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }
template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }
template<typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template<typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;
/*
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
using namespace __gnu_pbds; // find_by_order(), order_of_key()
template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
*/
template <int mod>
struct ModInt
{
    using lint = long long;
    static int get_mod() { return mod; }
    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&](){
                std::set<int> fac;
                int v = mod - 1;
                for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < mod; g++) {
                    bool ok = true;
                    for (auto i : fac) if (ModInt(g).power((mod - 1) / i) == 1) { ok = false; break; }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }
    int val;
    constexpr ModInt() : val(0) {}
    constexpr ModInt &_setval(lint v) { val = (v >= mod ? v - mod : v); return *this; }
    constexpr ModInt(lint v) { _setval(v % mod + mod); }
    explicit operator bool() const { return val != 0; }
    constexpr ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); }
    constexpr ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); }
    constexpr ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); }
    constexpr ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); }
    constexpr ModInt operator-() const { return ModInt()._setval(mod - val); }
    constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); }
    friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); }
    friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); }
    friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); }
    constexpr bool operator==(const ModInt &x) const { return val == x.val; }
    constexpr bool operator!=(const ModInt &x) const { return val != x.val; }
    bool operator<(const ModInt &x) const { return val < x.val; }  // To use std::map<ModInt, T>
    friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; is >> t; x = ModInt(t); return is; }
    friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { os << x.val;  return os; }
    constexpr lint power(lint n) const {
        lint ans = 1, tmp = this->val;
        while (n) {
            if (n & 1) ans = ans * tmp % mod;
            tmp = tmp * tmp % mod;
            n /= 2;
        }
        return ans;
    }
    constexpr lint inv() const { return this->power(mod - 2); }
    constexpr ModInt operator^(lint n) const { return ModInt(this->power(n)); }
    constexpr ModInt &operator^=(lint n) { return *this = *this ^ n; }

    inline ModInt fac() const {
        static std::vector<ModInt> facs;
        int l0 = facs.size();
        if (l0 > this->val) return facs[this->val];

        facs.resize(this->val + 1);
        for (int i = l0; i <= this->val; i++) facs[i] = (i == 0 ? ModInt(1) : facs[i - 1] * ModInt(i));
        return facs[this->val];
    }

    ModInt doublefac() const {
        lint k = (this->val + 1) / 2;
        if (this->val & 1) return ModInt(k * 2).fac() / ModInt(2).power(k) / ModInt(k).fac();
        else return ModInt(k).fac() * ModInt(2).power(k);
    }

    ModInt nCr(const ModInt &r) const {
        if (this->val < r.val) return ModInt(0);
        return this->fac() / ((*this - r).fac() * r.fac());
    }

    ModInt sqrt() const {
        if (val == 0) return 0;
        if (mod == 2) return val;
        if (power((mod - 1) / 2) != 1) return 0;
        ModInt b = 1;
        while (b.power((mod - 1) / 2) == 1) b += 1;
        int e = 0, m = mod - 1;
        while (m % 2 == 0) m >>= 1, e++;
        ModInt x = power((m - 1) / 2), y = (*this) * x * x;
        x *= (*this);
        ModInt z = b.power(m);
        while (y != 1) {
            int j = 0;
            ModInt t = y;
            while (t != 1) j++, t *= t;
            z = z.power(1LL << (e - j - 1));
            x *= z, z *= z, y *= z;
            e = j;
        }
        return ModInt(std::min(x.val, mod - x.val));
    }
};
using mint = ModInt<1000000009>;

// Integer convolution for arbitrary mod
// with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class.
// We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`.
// input: a (size: n), b (size: m)
// return: vector (size: n + m - 1)
template <typename MODINT>
vector<MODINT> nttconv(vector<MODINT> a, vector<MODINT> b, bool skip_garner = false);

constexpr int nttprimes[3] = {998244353, 167772161, 469762049};

// Integer FFT (Fast Fourier Transform) for ModInt class
// (Also known as Number Theoretic Transform, NTT)
// is_inverse: inverse transform
// ** Input size must be 2^n **
// template <typename MODINT>
// void ntt(vector<MODINT> &a, bool is_inverse = false)
// {
//     int n = a.size();
//     assert(__builtin_popcount(n) == 1);
//     MODINT h = MODINT(MODINT::get_primitive_root()).power((MODINT::get_mod() - 1) / n);
//     if (is_inverse) h = 1 / h;

//     int i = 0;
//     for (int j = 1; j < n - 1; j++) {
//         for (int k = n >> 1; k > (i ^= k); k >>= 1);
//         if (j < i) swap(a[i], a[j]);
//     }

//     for (int m = 1; m < n; m *= 2) {
//         int m2 = 2 * m;
//         MODINT base = h.power(n / m2), w = 1;
//         for (int x = 0; x < m; x++) {
//             for (int s = x; s < n; s += m2) {
//                 MODINT u = a[s], d = a[s + m] * w;
//                 a[s] = u + d, a[s + m] = u - d;
//             }
//             w *= base;
//         }
//     }
//     if (is_inverse) {
//         long long int n_inv = MODINT(n).inv();
//         for (auto &v : a) v *= n_inv;
//     }
// }
// from <https://yukicoder.me/submissions/496207>
template <class T>
void ntt(vector<T> &a, bool inverse) {
    int n = size(a);
    assert((n & (n - 1)) == 0);
    if(n < 2) return;
    assert((T::get_mod() - 1) % n == 0);
    static vector<T> w{1}, iw{1};
    for(int m = size(w); m < n / 2; m *= 2) {
        static T root = T::get_primitive_root();
        T dw = root.power((T::get_mod() - 1) / (4 * m)), idw = 1 / dw;
        w.resize(2 * m), iw.resize(2 * m);
        for(int i = 0; i < m; ++i)
            w[m + i] = w[i] * dw, iw[m + i] = iw[i] * idw;
    }
    if(not inverse) {
        for(int m = n; m >>= 1;) {
            for(int s = 0, k = 0; s < n; s += 2 * m, ++k) {
                for(int i = s, j = s + m; i < s + m; ++i, ++j) {
                    T x = a[i], y = a[j] * w[k];
                    a[i] = x + y, a[j] = x - y;
                }
            }
        }
    } else {
        for(int m = 1; m < n; m *= 2) {
            for(int s = 0, k = 0; s < n; s += 2 * m, ++k) {
                for(int i = s, j = s + m; i < s + m; ++i, ++j) {
                    T x = a[i], y = a[j];
                    a[i] = x + y, a[j] = (x - y) * iw[k];
                }
            }
        }
        auto inv = 1 / T(n);
        for(auto &&e : a) e *= inv;
    }
}

template<int MOD>
vector<ModInt<MOD>> nttconv_(const vector<int> &a, const vector<int> &b) {
    int sz = a.size();
    assert(a.size() == b.size() and __builtin_popcount(sz) == 1);
    vector<ModInt<MOD>> ap(sz), bp(sz);
    for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i];
    if (a == b) {
        ntt(ap, false);
        bp = ap;
    }
    else {
        ntt(ap, false);
        ntt(bp, false);
    }
    for (int i = 0; i < sz; i++) ap[i] *= bp[i];
    ntt(ap, true);
    return ap;
}
long long int extgcd_ntt_(long long int a, long long int b, long long int &x, long long int &y)
{
    long long int d = a;
    if (b != 0) d = extgcd_ntt_(b, a % b, y, x), y -= (a / b) * x;
    else x = 1, y = 0;
    return d;
}
long long int modinv_ntt_(long long int a, long long int m)
{
    long long int x, y;
    extgcd_ntt_(a, m, x, y);
    return (m + x % m) % m;
}
long long int garner_ntt_(int r0, int r1, int r2, int mod)
{
    array<long long int, 4> rs = {r0, r1, r2, 0};
    vector<long long int> coffs(4, 1), constants(4, 0);
    for (int i = 0; i < 3; i++) {
        long long int v = (rs[i] - constants[i]) * modinv_ntt_(coffs[i], nttprimes[i]) % nttprimes[i];
        if (v < 0) v += nttprimes[i];
        for (int j = i + 1; j < 4; j++) {
            (constants[j] += coffs[j] * v) %= (j < 3 ? nttprimes[j] : mod);
            (coffs[j] *= nttprimes[i]) %= (j < 3 ? nttprimes[j] : mod);
        }
    }
    return constants.back();
}
template <typename MODINT>
vector<MODINT> nttconv(vector<MODINT> a, vector<MODINT> b, bool skip_garner)
{
    int sz = 1, n = a.size(), m = b.size();
    while (sz < n + m) sz <<= 1;
    if (sz <= 16) {
        vector<MODINT> ret(n + m - 1);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j];
        }
        return ret;
    }
    int mod = MODINT::get_mod();
    if (skip_garner or find(begin(nttprimes), end(nttprimes), mod) != end(nttprimes)) {
        a.resize(sz), b.resize(sz);
        if (a == b) { ntt(a, false); b = a; }
        else ntt(a, false), ntt(b, false);
        for (int i = 0; i < sz; i++) a[i] *= b[i];
        ntt(a, true);
        a.resize(n + m - 1);
    }
    else {
        vector<int> ai(sz), bi(sz);
        for (int i = 0; i < n; i++) ai[i] = a[i].val;
        for (int i = 0; i < m; i++) bi[i] = b[i].val;
        auto ntt0 = nttconv_<nttprimes[0]>(ai, bi);
        auto ntt1 = nttconv_<nttprimes[1]>(ai, bi);
        auto ntt2 = nttconv_<nttprimes[2]>(ai, bi);
        a.resize(n + m - 1);
        for (int i = 0; i < n + m - 1; i++) {
            a[i] = garner_ntt_(ntt0[i].val, ntt1[i].val, ntt2[i].val, mod);
        }
    }
    return a;
}


template <typename T>
std::vector<T> inv(const std::vector<T> &f)
{
    assert(f.size() and f[0] != T(0)); // Requirement: F(0) != 0
    std::vector<T> ret({T(1) / f[0]});
    while (ret.size() < f.size())
    {
        std::vector<T> tmp(f.begin(), f.begin() + std::min(f.size(), ret.size() * 2));
        tmp = nttconv(tmp, nttconv(ret, ret));
        ret.resize(2 * ret.size());
        for (int i = ret.size() / 2; i < ret.size(); i++) ret[i] = -tmp[i];
    }
    ret.resize(f.size());
    return ret;
}

template <typename T>
std::vector<T> differential(std::vector<T> f)
{
    for (int i = 0; i + 1 < f.size(); i++) f[i] = f[i + 1] * (i + 1);
    if (f.size()) f.back() = 0;
    return f;
}

template <typename T>
std::vector<T> integral(std::vector<T> f)
{
    // f.emplace_back(0);
    for (int i = f.size() - 1; i; i--) f[i] = f[i - 1] / i;
    f[0] = 0;
    return f;
}

template <typename T>
std::vector<T> log(const std::vector<T> &f)
{
    assert(f.size() and f[0] == T(1)); // Requirement: F(0) = 1
    auto g = nttconv(differential(f), inv(f));
    g.resize(f.size());
    return integral(g);
}

template <typename T>
std::vector<T> exp(const std::vector<T> &f)
{
    assert(f.empty() or f[0] == T(0)); // Requirement: F(0) = 0
    std::vector<T> ret({T(1)});
    while (ret.size() < f.size())
    {
        int k = ret.size();
        std::vector<T> g(f.begin(), f.begin() + min<int>(k * 2, f.size()));
        g.resize(k * 2);
        g[0] += 1;
        auto rlog = ret;
        rlog.resize(k * 2);
        rlog = log(rlog);
        for (int i = 0; i < min(rlog.size(), g.size()); i++) g[i] -= rlog[i];
        ret = nttconv(ret, g);
        ret.resize(k * 2);
    }
    ret.resize(f.size());
    return ret;
}
int main()
{
    mint j = mint(-1).sqrt();

    int N;
    cin >> N;

    vector<mint> f0(N + 10);
    FOR(i, 1, f0.size()) f0[i] = 1LL * (i + 1) * (i + 1);
    auto f0a = f0, f0b = f0;
    for (auto &x : f0a) x *= j;
    for (auto &x : f0b) x *= -j;
    f0a = exp(f0a);
    f0b = exp(f0b);

    mint ret = mint(N).fac();
    FOR(K, 1, N + 1)
    {
        mint r = (f0a[K] - f0b[K]) / (2 * j) + (f0a[K] + f0b[K]) / 2;
        cout << r * ret << '\n';
    }
}
0