結果
問題 | No.1080 Strange Squared Score Sum |
ユーザー |
![]() |
提出日時 | 2020-06-13 05:27:57 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 16,222 bytes |
コンパイル時間 | 9,706 ms |
コンパイル使用メモリ | 263,876 KB |
最終ジャッジ日時 | 2025-01-11 03:37:50 |
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp: In function 'std::vector<_Tp> log(const std::vector<_Tp>&)': main.cpp:354:12: error: reference to 'integral' is ambiguous 354 | return integral(g); | ^~~~~~~~ In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.4.0/include/c++/12/compare:39, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.4.0/include/c++/12/bits/stl_pair.h:65, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.4.0/include/c++/12/bits/stl_algobase.h:64, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.4.0/include/c++/12/bits/specfun.h:45, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.4.0/include/c++/12/cmath:1935, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.4.0/include/c++/12/x86_64-pc-linux-gnu/bits/stdc++.h:41, from main.cpp:1: /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.4.0/include/c++/12/concepts:100:13: note: candidates are: 'template<class _Tp> concept std::integral' 100 | concept integral = is_integral_v<_Tp>; | ^~~~~~~~ main.cpp:340:16: note: 'template<class T> std::vector<_Tp> integral(std::vector<_Tp>)' 340 | std::vector<T> integral(std::vector<T> f) | ^~~~~~~~
ソースコード
#include <bits/stdc++.h>using namespace std;using lint = long long int;using pint = pair<int, int>;using plint = pair<lint, lint>;struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;#define ALL(x) (x).begin(), (x).end()#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)#define REP(i, n) FOR(i,0,n)#define IREP(i, n) IFOR(i,0,n)template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }template<typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }template<typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; }template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; }template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; }template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; returnos; }template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}";return os; }template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; returnos; }template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;/*#include <ext/pb_ds/assoc_container.hpp>#include <ext/pb_ds/tree_policy.hpp>#include <ext/pb_ds/tag_and_trait.hpp>using namespace __gnu_pbds; // find_by_order(), order_of_key()template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;*/template <int mod>struct ModInt{using lint = long long;static int get_mod() { return mod; }static int get_primitive_root() {static int primitive_root = 0;if (!primitive_root) {primitive_root = [&](){std::set<int> fac;int v = mod - 1;for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i;if (v > 1) fac.insert(v);for (int g = 1; g < mod; g++) {bool ok = true;for (auto i : fac) if (ModInt(g).power((mod - 1) / i) == 1) { ok = false; break; }if (ok) return g;}return -1;}();}return primitive_root;}int val;constexpr ModInt() : val(0) {}constexpr ModInt &_setval(lint v) { val = (v >= mod ? v - mod : v); return *this; }constexpr ModInt(lint v) { _setval(v % mod + mod); }explicit operator bool() const { return val != 0; }constexpr ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); }constexpr ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); }constexpr ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); }constexpr ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); }constexpr ModInt operator-() const { return ModInt()._setval(mod - val); }constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); }friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); }friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); }friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); }constexpr bool operator==(const ModInt &x) const { return val == x.val; }constexpr bool operator!=(const ModInt &x) const { return val != x.val; }bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map<ModInt, T>friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; is >> t; x = ModInt(t); return is; }friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { os << x.val; return os; }constexpr lint power(lint n) const {lint ans = 1, tmp = this->val;while (n) {if (n & 1) ans = ans * tmp % mod;tmp = tmp * tmp % mod;n /= 2;}return ans;}constexpr lint inv() const { return this->power(mod - 2); }constexpr ModInt operator^(lint n) const { return ModInt(this->power(n)); }constexpr ModInt &operator^=(lint n) { return *this = *this ^ n; }inline ModInt fac() const {static std::vector<ModInt> facs;int l0 = facs.size();if (l0 > this->val) return facs[this->val];facs.resize(this->val + 1);for (int i = l0; i <= this->val; i++) facs[i] = (i == 0 ? ModInt(1) : facs[i - 1] * ModInt(i));return facs[this->val];}ModInt doublefac() const {lint k = (this->val + 1) / 2;if (this->val & 1) return ModInt(k * 2).fac() / ModInt(2).power(k) / ModInt(k).fac();else return ModInt(k).fac() * ModInt(2).power(k);}ModInt nCr(const ModInt &r) const {if (this->val < r.val) return ModInt(0);return this->fac() / ((*this - r).fac() * r.fac());}ModInt sqrt() const {if (val == 0) return 0;if (mod == 2) return val;if (power((mod - 1) / 2) != 1) return 0;ModInt b = 1;while (b.power((mod - 1) / 2) == 1) b += 1;int e = 0, m = mod - 1;while (m % 2 == 0) m >>= 1, e++;ModInt x = power((m - 1) / 2), y = (*this) * x * x;x *= (*this);ModInt z = b.power(m);while (y != 1) {int j = 0;ModInt t = y;while (t != 1) j++, t *= t;z = z.power(1LL << (e - j - 1));x *= z, z *= z, y *= z;e = j;}return ModInt(std::min(x.val, mod - x.val));}};using mint = ModInt<1000000009>;// Integer convolution for arbitrary mod// with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class.// We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`.// input: a (size: n), b (size: m)// return: vector (size: n + m - 1)template <typename MODINT>vector<MODINT> nttconv(vector<MODINT> a, vector<MODINT> b, bool skip_garner = false);constexpr int nttprimes[3] = {998244353, 167772161, 469762049};// Integer FFT (Fast Fourier Transform) for ModInt class// (Also known as Number Theoretic Transform, NTT)// is_inverse: inverse transform// ** Input size must be 2^n **template <typename MODINT>void ntt(vector<MODINT> &a, bool is_inverse = false){int n = a.size();assert(__builtin_popcount(n) == 1);MODINT h = MODINT(MODINT::get_primitive_root()).power((MODINT::get_mod() - 1) / n);if (is_inverse) h = 1 / h;int i = 0;for (int j = 1; j < n - 1; j++) {for (int k = n >> 1; k > (i ^= k); k >>= 1);if (j < i) swap(a[i], a[j]);}for (int m = 1; m < n; m *= 2) {int m2 = 2 * m;MODINT base = h.power(n / m2), w = 1;for (int x = 0; x < m; x++) {for (int s = x; s < n; s += m2) {MODINT u = a[s], d = a[s + m] * w;a[s] = u + d, a[s + m] = u - d;}w *= base;}}if (is_inverse) {long long int n_inv = MODINT(n).inv();for (auto &v : a) v *= n_inv;}}// // from <https://yukicoder.me/submissions/496207>// template <class T>// void ntt(vector<T> &a, bool inverse) {// int n = size(a);// assert((n & (n - 1)) == 0);// if(n < 2) return;// assert((T::get_mod() - 1) % n == 0);// static vector<T> w{1}, iw{1};// for(int m = size(w); m < n / 2; m *= 2) {// static T root = T::get_primitive_root();// T dw = root.power((T::get_mod() - 1) / (4 * m)), idw = 1 / dw;// w.resize(2 * m), iw.resize(2 * m);// for(int i = 0; i < m; ++i)// w[m + i] = w[i] * dw, iw[m + i] = iw[i] * idw;// }// if(not inverse) {// for(int m = n; m >>= 1;) {// for(int s = 0, k = 0; s < n; s += 2 * m, ++k) {// for(int i = s, j = s + m; i < s + m; ++i, ++j) {// T x = a[i], y = a[j] * w[k];// a[i] = x + y, a[j] = x - y;// }// }// }// } else {// for(int m = 1; m < n; m *= 2) {// for(int s = 0, k = 0; s < n; s += 2 * m, ++k) {// for(int i = s, j = s + m; i < s + m; ++i, ++j) {// T x = a[i], y = a[j];// a[i] = x + y, a[j] = (x - y) * iw[k];// }// }// }// auto inv = 1 / T(n);// for(auto &&e : a) e *= inv;// }// }template<int MOD>vector<ModInt<MOD>> nttconv_(const vector<int> &a, const vector<int> &b) {int sz = a.size();assert(a.size() == b.size() and __builtin_popcount(sz) == 1);vector<ModInt<MOD>> ap(sz), bp(sz);for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i];if (a == b) {ntt(ap, false);bp = ap;}else {ntt(ap, false);ntt(bp, false);}for (int i = 0; i < sz; i++) ap[i] *= bp[i];ntt(ap, true);return ap;}long long int extgcd_ntt_(long long int a, long long int b, long long int &x, long long int &y){long long int d = a;if (b != 0) d = extgcd_ntt_(b, a % b, y, x), y -= (a / b) * x;else x = 1, y = 0;return d;}long long int modinv_ntt_(long long int a, long long int m){long long int x, y;extgcd_ntt_(a, m, x, y);return (m + x % m) % m;}long long int garner_ntt_(int r0, int r1, int r2, int mod){array<long long int, 4> rs = {r0, r1, r2, 0};vector<long long int> coffs(4, 1), constants(4, 0);for (int i = 0; i < 3; i++) {long long int v = (rs[i] - constants[i]) * modinv_ntt_(coffs[i], nttprimes[i]) % nttprimes[i];if (v < 0) v += nttprimes[i];for (int j = i + 1; j < 4; j++) {(constants[j] += coffs[j] * v) %= (j < 3 ? nttprimes[j] : mod);(coffs[j] *= nttprimes[i]) %= (j < 3 ? nttprimes[j] : mod);}}return constants.back();}template <typename MODINT>vector<MODINT> nttconv(vector<MODINT> a, vector<MODINT> b, bool skip_garner){int sz = 1, n = a.size(), m = b.size();while (sz < n + m) sz <<= 1;if (sz <= 16) {vector<MODINT> ret(n + m - 1);for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j];}return ret;}int mod = MODINT::get_mod();if (skip_garner or find(begin(nttprimes), end(nttprimes), mod) != end(nttprimes)) {a.resize(sz), b.resize(sz);if (a == b) { ntt(a, false); b = a; }else ntt(a, false), ntt(b, false);for (int i = 0; i < sz; i++) a[i] *= b[i];ntt(a, true);a.resize(n + m - 1);}else {vector<int> ai(sz), bi(sz);for (int i = 0; i < n; i++) ai[i] = a[i].val;for (int i = 0; i < m; i++) bi[i] = b[i].val;auto ntt0 = nttconv_<nttprimes[0]>(ai, bi);auto ntt1 = nttconv_<nttprimes[1]>(ai, bi);auto ntt2 = nttconv_<nttprimes[2]>(ai, bi);ModInt<nttprimes[1]> im0 = 1;ModInt<nttprimes[2]> im1 = 1, im0m1;im0 /= nttprimes[0];im1 /= nttprimes[1];im0m1 = im1 / nttprimes[0];MODINT m0 = nttprimes[0], m0m1 = m0 * nttprimes[1];a.resize(n + m - 1);for (int i = 0; i < n + m - 1; i++) {// a[i] = garner_ntt_(ntt0[i].val, ntt1[i].val, ntt2[i].val, mod);int y0 = ntt0[i].val;int y1 = (im0 * (ntt1[i] - y0)).val;int y2 = (im0m1 * (ntt2[i] - y0) - im1 * y1).val;a[i] = y0 + m0 * y1 + m0m1 * y2;}}return a;}template <typename T>std::vector<T> inv(const std::vector<T> &f){assert(f.size() and f[0] != T(0)); // Requirement: F(0) != 0std::vector<T> ret({T(1) / f[0]});while (ret.size() < f.size()){std::vector<T> tmp(f.begin(), f.begin() + std::min(f.size(), ret.size() * 2));tmp = nttconv(tmp, nttconv(ret, ret));ret.resize(2 * ret.size());for (int i = ret.size() / 2; i < ret.size(); i++) ret[i] = -tmp[i];}ret.resize(f.size());return ret;}template <typename T>std::vector<T> differential(std::vector<T> f){for (int i = 0; i + 1 < f.size(); i++) f[i] = f[i + 1] * (i + 1);if (f.size()) f.back() = 0;return f;}template <typename T>std::vector<T> integral(std::vector<T> f){// f.emplace_back(0);for (int i = f.size() - 1; i; i--) f[i] = f[i - 1] / i;f[0] = 0;return f;}template <typename T>std::vector<T> log(const std::vector<T> &f){assert(f.size() and f[0] == T(1)); // Requirement: F(0) = 1auto g = nttconv(differential(f), inv(f));g.resize(f.size());return integral(g);}template <typename T>std::vector<T> exp(const std::vector<T> &f){assert(f.empty() or f[0] == T(0)); // Requirement: F(0) = 0std::vector<T> ret({T(1)});while (ret.size() < f.size()){int k = ret.size();std::vector<T> g(f.begin(), f.begin() + min<int>(k * 2, f.size()));g.resize(k * 2);g[0] += 1;auto rlog = ret;rlog.resize(k * 2);rlog = log(rlog);for (int i = 0; i < min(rlog.size(), g.size()); i++) g[i] -= rlog[i];ret = nttconv(ret, g);ret.resize(k * 2);}ret.resize(f.size());return ret;}int main(){mint j = mint(-1).sqrt();int N;cin >> N;vector<mint> f0(N + 10);FOR(i, 1, f0.size()) f0[i] = 1LL * (i + 1) * (i + 1);auto f0a = f0, f0b = f0;for (auto &x : f0a) x *= j;for (auto &x : f0b) x *= -j;f0a = exp(f0a);f0b = exp(f0b);mint ret = mint(N).fac();FOR(K, 1, N + 1){mint r = (f0a[K] - f0b[K]) / (2 * j) + (f0a[K] + f0b[K]) / 2;cout << r * ret << '\n';}}