結果

問題 No.1116 Cycles of Dense Graph
ユーザー hotman78
提出日時 2020-06-18 18:11:44
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
RE  
(最新)
AC  
(最初)
実行時間 -
コード長 9,048 bytes
コンパイル時間 21,988 ms
コンパイル使用メモリ 449,848 KB
最終ジャッジ日時 2025-01-11 05:09:46
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 28 RE * 10
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC push_options
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx")
#include<bits/stdc++.h>
#include <xmmintrin.h>
#include <immintrin.h>
using namespace::std;
__attribute__((constructor))void init(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/priority_queue.hpp>
#include<ext/pb_ds/tag_and_trait.hpp>
// #include <boost/multiprecision/cpp_dec_float.hpp>
// #include <boost/multiprecision/cpp_int.hpp>
// namespace mp = boost::multiprecision;
// typedef mp::number<mp::cpp_dec_float<0>> cdouble;
// typedef mp::cpp_int cint;
template<typename T>using pbds=__gnu_pbds::tree<T,__gnu_pbds::null_type,less<T>,__gnu_pbds::rb_tree_tag,__gnu_pbds::tree_order_statistics_node_update
    >;
template<typename T>using pbds_map=__gnu_pbds::tree<T,T,less<T>,__gnu_pbds::rb_tree_tag,__gnu_pbds::tree_order_statistics_node_update>;
template<typename T,typename E>using hash_map=__gnu_pbds::gp_hash_table<T,E>;
template<typename T>using pqueue =__gnu_pbds::priority_queue<T, greater<T>,__gnu_pbds::rc_binomial_heap_tag>;
typedef long long lint;
#define INF (1LL<<60)
#define IINF (1<<30)
#define LINF (9223372036854775807LL)
#define EPS (1e-10)
#define endl ('\n')
//#define MOD 1000000007LL
#define MOD 998244353LL
//#define MOD 18446744069414584321ULL
typedef vector<lint> vec;
typedef vector<vector<lint>> mat;
typedef vector<vector<vector<lint>>> mat3;
typedef vector<string> svec;
typedef vector<vector<string>> smat;
template<typename T>inline void numout(T t){bool f=0;for(auto i:t){cout<<(f?" ":"")<<i<INF/2?i:"INF";f=1;}cout<<endl;}
template<typename T>inline void numout2(T t){for(auto i:t)numout(i);}
template<typename T>inline void output(T t){bool f=0;for(auto i:t){cout<<(f?" ":"")<<i;f=1;}cout<<endl;}
template<typename T>inline void output2(T t){for(auto i:t)output(i);}
template<typename T>inline void _output(T t){bool f=0;for(lint i=0;i<t.size();i++){cout<<f?"":" "<<t[i];f=1;}cout<<endl;}
template<typename T>inline void _output2(T t){for(lint i=0;i<t.size();i++)output(t[i]);}
#define rep(i,n) for(lint i=0;i<lint(n);++i)
#define repi(i,a,b) for(lint i=lint(a);i<(lint)(b);++i)
#define rrep(i,n) for(lint i=lint(n)-1;i>=0;--i)
#define rrepi(i,a,b) for(lint i=lint(b)-1;i>=lint(a);--i)
#define irep(i) for(lint i=0;;++i)
#define all(n) begin(n),end(n)
#define dist(a,b,c,d) sqrt(pow(a-c,2)+pow(b-d,2))
inline lint gcd(lint A,lint B){return B?gcd(B,A%B):A;}
inline lint lcm(lint A,lint B){return A/gcd(A,B)*B;}
// inline cint cgcd(cint A,cint B){return B?cgcd(B,A%B):A;}
// inline cint clcm(cint A,cint B){return A/cgcd(A,B)*B;}
bool chmin(auto& s,const auto& t){bool res=s>t;s=min(s,t);return res;}
bool chmax(auto& s,const auto& t){bool res=s<t;s=max(s,t);return res;}
const vector<lint> dx={1,0,-1,0,1,1,-1,-1};
const vector<lint> dy={0,1,0,-1,1,-1,1,-1};
#define SUM(v) accumulate(all(v),0LL)
auto call=[](auto f,auto... args){return f(f,args...);};
class mint {
using u64 = std::uint_fast64_t;
public:
u64 a;
constexpr mint(const long long x = 0)noexcept:a(x>=0?x%get_mod():get_mod()-(-x)%get_mod()){}
constexpr u64 &value()noexcept{return a;}
constexpr const u64 &value() const noexcept {return a;}
constexpr mint operator+(const mint rhs)const noexcept{return mint(*this) += rhs;}
constexpr mint operator-(const mint rhs)const noexcept{return mint(*this)-=rhs;}
constexpr mint operator*(const mint rhs) const noexcept {return mint(*this) *= rhs;}
constexpr mint operator/(const mint rhs) const noexcept {return mint(*this) /= rhs;}
constexpr mint &operator+=(const mint rhs) noexcept {
a += rhs.a;
if (a >= get_mod())a -= get_mod();
return *this;
}
constexpr mint &operator-=(const mint rhs) noexcept {
if (a<rhs.a)a += get_mod();
a -= rhs.a;
return *this;
}
constexpr mint &operator*=(const mint rhs) noexcept {
a = a * rhs.a % get_mod();
return *this;
}
constexpr mint operator++(int n) noexcept {
a += 1;
if (a >= get_mod())a -= get_mod();
return *this;
}
constexpr mint operator--(int n) noexcept {
if (a<1)a += get_mod();
a -= 1;
return *this;
}
constexpr mint &operator/=(mint rhs) noexcept {
u64 exp=get_mod()-2;
while (exp) {
if (exp % 2) {
*this *= rhs;
}
rhs *= rhs;
exp /= 2;
}
return *this;
}
constexpr bool operator==(mint x) noexcept {
return a==x.a;
}
constexpr bool operator!=(mint x) noexcept {
return a!=x.a;
}
constexpr bool operator<(mint x) noexcept {
return a<x.a;
}
constexpr bool operator>(mint x) noexcept {
return a>x.a;
}
constexpr bool operator<=(mint x) noexcept {
return a<=x.a;
}
constexpr bool operator>=(mint x) noexcept {
return a>=x.a;
}
constexpr static int root(){
mint root = 2;
while(root.pow((get_mod()-1)>>1).a==1)root++;
return root.a;
}
constexpr mint pow(long long n){
long long x=a;
mint ret = 1;
while(n>0) {
if(n&1)(ret*=x);
(x*=x)%=get_mod();
n>>=1;
}
return ret;
}
constexpr mint inv(){
return pow(get_mod()-2);
}
static vector<mint> fac,ifac;
static bool init;
constexpr static int mx=10000001;
void build(){
init=0;
fac.resize(mx);
ifac.resize(mx);
fac[0]=1,ifac[0]=1;
for(int i=1;i<mx;i++)fac[i]=fac[i-1]*i;
ifac[mx-1]=fac[mx-1].inv();
for(int i=mx-2;i>=0;i--)ifac[i]=ifac[i+1]*(i+1);
}
mint comb(lint b){
if(init)build();
if(a==0&&b==0)return 1;
if((lint)a<b||a<0)return 0;
return fac[a]*ifac[a-b]*ifac[b];
}
mint fact(){
if(init)build();
return fac[a];
}
mint fact_inv(){
if(init)build();
return ifac[a];
}
friend ostream& operator<<(ostream& lhs, const mint& rhs) noexcept {
lhs << rhs.a;
return lhs;
}
friend istream& operator>>(istream& lhs,mint& rhs) noexcept {
lhs >> rhs.a;
return lhs;
}
constexpr static u64 get_mod(){return MOD;}
};
vector<mint> mint::fac;
vector<mint> mint::ifac;
bool mint::init=1;
class UF{
public:
map<int,int> data;
int sz;
public:
UF(int sz):sz(sz){}
bool unite(int x,int y){
x=root(x);y=root(y);
if(x==y)return 0;
if(data[x]>data[y])swap(x,y);
data[x]+=data[y];
data[y]=x;
sz--;
return 1;
}
inline int root(int x){
if(!data.count(x))data[x]=-1;
return data[x]<0?x:data[x]=root(data[x]);
}
inline bool same(int x, int y){return root(x)==root(y);}
inline int size(){return sz;}
inline int size(int x){return -data[root(x)];}
};
int main(){
lint n,m;
cin>>n>>m;
assert(1<=n&&n<=1e3);
assert(0<=m&&m<=min(n*(n-1)/2,15LL));
vec a(m),b(m);
rep(i,m){
cin>>a[i]>>b[i];
a[i]--;b[i]--;
}
mint ans=0;
rep(i,1LL<<m){
lint cnt1,cnt2=0,cnt=0;
set<lint>s;
bool f=0;
unordered_map<lint,lint>ma;
rep(j,m){
if(i&(1LL<<j)){
if(!ma.count(a[j]))ma[a[j]]=j;
if(!ma.count(b[j]))ma[b[j]]=j;
if(ma[a[j]]==-1||ma[b[j]]==-1){
f=1;
}else if(ma[a[j]]==j&&ma[b[j]]==j){
ma[a[j]]=b[j];
ma[b[j]]=a[j];
cnt2++;
}else if(ma[a[j]]==j){
ma[ma[b[j]]]=a[j];
ma[a[j]]=ma[b[j]];
ma[b[j]]=-1;
}else if(ma[b[j]]==j){
ma[ma[a[j]]]=b[j];
ma[b[j]]=ma[a[j]];
ma[a[j]]=-1;
}else{
ma[ma[a[j]]]=b[j];
ma[ma[b[j]]]=a[j];
ma[a[j]]=ma[b[j]]=-1;
cnt2--;
}
s.insert(a[j]);
s.insert(b[j]);
cnt++;
}
}
if(f)continue;
if(cnt2==0&&cnt){
if(cnt%2)ans--;
else ans++;
continue;
}
cnt1=n-cnt;
cnt2=s.size()-cnt;
mint res=0;
mint rev2=mint(1)/2;
if(cnt==0){
repi(k,3,n+1){
res+=mint(n).comb(k)*mint(k-1).fact()*rev2;
}
}else{
repi(k,cnt2+1,cnt1+1){
res+=mint(cnt1-cnt2).comb(k-cnt2)*mint(k-1).fact()*rev2;
}
if(cnt>=2){
res+=mint(cnt2-1).fact()*rev2;
}
}
res*=mint(2).pow(cnt2);
if(cnt%2)ans-=res;
else ans+=res;
}
cout<<ans<<endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0