結果

問題 No.1116 Cycles of Dense Graph
ユーザー hotman78hotman78
提出日時 2020-06-18 18:11:44
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
(最新)
AC  
(最初)
実行時間 -
コード長 9,048 bytes
コンパイル時間 5,098 ms
コンパイル使用メモリ 435,720 KB
実行使用メモリ 159,556 KB
最終ジャッジ日時 2024-07-03 12:55:37
合計ジャッジ時間 11,947 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 131 ms
159,460 KB
testcase_01 AC 241 ms
159,460 KB
testcase_02 AC 133 ms
159,352 KB
testcase_03 AC 130 ms
159,436 KB
testcase_04 AC 129 ms
159,556 KB
testcase_05 AC 142 ms
159,488 KB
testcase_06 AC 189 ms
159,540 KB
testcase_07 AC 134 ms
159,492 KB
testcase_08 AC 129 ms
159,476 KB
testcase_09 AC 130 ms
159,520 KB
testcase_10 AC 130 ms
159,356 KB
testcase_11 AC 167 ms
159,536 KB
testcase_12 AC 139 ms
159,380 KB
testcase_13 AC 130 ms
159,460 KB
testcase_14 AC 128 ms
159,484 KB
testcase_15 AC 131 ms
159,440 KB
testcase_16 AC 138 ms
159,440 KB
testcase_17 AC 130 ms
159,472 KB
testcase_18 AC 133 ms
159,464 KB
testcase_19 AC 140 ms
159,500 KB
testcase_20 RE -
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
testcase_25 AC 130 ms
159,444 KB
testcase_26 RE -
testcase_27 AC 130 ms
159,432 KB
testcase_28 RE -
testcase_29 AC 130 ms
159,348 KB
testcase_30 AC 130 ms
159,512 KB
testcase_31 AC 132 ms
159,452 KB
testcase_32 AC 129 ms
159,540 KB
testcase_33 AC 2 ms
6,940 KB
testcase_34 AC 2 ms
6,940 KB
testcase_35 AC 2 ms
6,944 KB
testcase_36 RE -
testcase_37 RE -
testcase_38 RE -
testcase_39 AC 542 ms
159,512 KB
testcase_40 AC 535 ms
159,536 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp:54:12: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
   54 | bool chmin(auto& s,const auto& t){bool res=s>t;s=min(s,t);return res;}
      |            ^~~~
main.cpp:54:26: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
   54 | bool chmin(auto& s,const auto& t){bool res=s>t;s=min(s,t);return res;}
      |                          ^~~~
main.cpp:55:12: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
   55 | bool chmax(auto& s,const auto& t){bool res=s<t;s=max(s,t);return res;}
      |            ^~~~
main.cpp:55:26: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
   55 | bool chmax(auto& s,const auto& t){bool res=s<t;s=max(s,t);return res;}
      |                          ^~~~

ソースコード

diff #

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC push_options
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx")
#include<bits/stdc++.h>
#include <xmmintrin.h>
#include <immintrin.h>
using namespace::std;
__attribute__((constructor))void init(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/priority_queue.hpp>
#include<ext/pb_ds/tag_and_trait.hpp>
// #include <boost/multiprecision/cpp_dec_float.hpp>
// #include <boost/multiprecision/cpp_int.hpp>
// namespace mp = boost::multiprecision;
// typedef mp::number<mp::cpp_dec_float<0>> cdouble;
// typedef mp::cpp_int cint;
template<typename T>using pbds=__gnu_pbds::tree<T,__gnu_pbds::null_type,less<T>,__gnu_pbds::rb_tree_tag,__gnu_pbds::tree_order_statistics_node_update>;
template<typename T>using pbds_map=__gnu_pbds::tree<T,T,less<T>,__gnu_pbds::rb_tree_tag,__gnu_pbds::tree_order_statistics_node_update>;
template<typename T,typename E>using hash_map=__gnu_pbds::gp_hash_table<T,E>;
template<typename T>using pqueue =__gnu_pbds::priority_queue<T, greater<T>,__gnu_pbds::rc_binomial_heap_tag>;
typedef long long lint;
#define INF (1LL<<60)
#define IINF (1<<30)
#define LINF (9223372036854775807LL)
#define EPS (1e-10)
#define endl ('\n')
//#define MOD 1000000007LL
#define MOD 998244353LL
//#define MOD 18446744069414584321ULL
typedef vector<lint> vec;
typedef vector<vector<lint>> mat;
typedef vector<vector<vector<lint>>> mat3;
typedef vector<string> svec;
typedef vector<vector<string>> smat;
template<typename T>inline void numout(T t){bool f=0;for(auto i:t){cout<<(f?" ":"")<<i<INF/2?i:"INF";f=1;}cout<<endl;}
template<typename T>inline void numout2(T t){for(auto i:t)numout(i);}
template<typename T>inline void output(T t){bool f=0;for(auto i:t){cout<<(f?" ":"")<<i;f=1;}cout<<endl;}
template<typename T>inline void output2(T t){for(auto i:t)output(i);}
template<typename T>inline void _output(T t){bool f=0;for(lint i=0;i<t.size();i++){cout<<f?"":" "<<t[i];f=1;}cout<<endl;}
template<typename T>inline void _output2(T t){for(lint i=0;i<t.size();i++)output(t[i]);}
#define rep(i,n) for(lint i=0;i<lint(n);++i)
#define repi(i,a,b) for(lint i=lint(a);i<(lint)(b);++i)
#define rrep(i,n) for(lint i=lint(n)-1;i>=0;--i)
#define rrepi(i,a,b) for(lint i=lint(b)-1;i>=lint(a);--i)
#define irep(i) for(lint i=0;;++i)
#define all(n) begin(n),end(n)
#define dist(a,b,c,d) sqrt(pow(a-c,2)+pow(b-d,2))
inline lint gcd(lint A,lint B){return B?gcd(B,A%B):A;}
inline lint lcm(lint A,lint B){return A/gcd(A,B)*B;}
// inline cint cgcd(cint A,cint B){return B?cgcd(B,A%B):A;}
// inline cint clcm(cint A,cint B){return A/cgcd(A,B)*B;}
bool chmin(auto& s,const auto& t){bool res=s>t;s=min(s,t);return res;}
bool chmax(auto& s,const auto& t){bool res=s<t;s=max(s,t);return res;}
const vector<lint> dx={1,0,-1,0,1,1,-1,-1};
const vector<lint> dy={0,1,0,-1,1,-1,1,-1};
#define SUM(v) accumulate(all(v),0LL)
auto call=[](auto f,auto... args){return f(f,args...);};

class mint {
  using u64 = std::uint_fast64_t;
    public:
    u64 a;
    constexpr mint(const long long x = 0)noexcept:a(x>=0?x%get_mod():get_mod()-(-x)%get_mod()){}
    constexpr u64 &value()noexcept{return a;}
    constexpr const u64 &value() const noexcept {return a;}
    constexpr mint operator+(const mint rhs)const noexcept{return mint(*this) += rhs;}
    constexpr mint operator-(const mint rhs)const noexcept{return mint(*this)-=rhs;}
    constexpr mint operator*(const mint rhs) const noexcept {return mint(*this) *= rhs;}
    constexpr mint operator/(const mint rhs) const noexcept {return mint(*this) /= rhs;}
    constexpr mint &operator+=(const mint rhs) noexcept {
        a += rhs.a;
        if (a >= get_mod())a -= get_mod();
        return *this;
    }
    constexpr mint &operator-=(const mint rhs) noexcept {
        if (a<rhs.a)a += get_mod();
        a -= rhs.a;
        return *this;
    }
    constexpr mint &operator*=(const mint rhs) noexcept {
        a = a * rhs.a % get_mod();
        return *this;
    }
    constexpr mint operator++(int n) noexcept {
        a += 1;
        if (a >= get_mod())a -= get_mod();
        return *this;
    }
    constexpr mint operator--(int n) noexcept {
        if (a<1)a += get_mod();
        a -= 1;
        return *this;
    }
    constexpr mint &operator/=(mint rhs) noexcept {
        u64 exp=get_mod()-2;
        while (exp) {
            if (exp % 2) {
                *this *= rhs;
            }
            rhs *= rhs;
            exp /= 2;
        }
        return *this;
    }
    constexpr bool operator==(mint x) noexcept {
        return a==x.a;
    }
    constexpr bool operator!=(mint x) noexcept {
        return a!=x.a;
    }
	constexpr bool operator<(mint x) noexcept {
        return a<x.a;
    }
	constexpr bool operator>(mint x) noexcept {
        return a>x.a;
    }
	constexpr bool operator<=(mint x) noexcept {
        return a<=x.a;
    }
	constexpr bool operator>=(mint x) noexcept {
        return a>=x.a;
    }
    constexpr static int root(){
        mint root = 2;
        while(root.pow((get_mod()-1)>>1).a==1)root++;
        return root.a;
    }
    constexpr mint pow(long long n){
        long long x=a;
        mint ret = 1;
        while(n>0) {
            if(n&1)(ret*=x);
            (x*=x)%=get_mod();
            n>>=1;
        }
        return ret;
    }
    constexpr mint inv(){
        return pow(get_mod()-2);
    }
    static vector<mint> fac,ifac;
    static bool init;
    constexpr static int mx=10000001;
    void build(){
        init=0;
        fac.resize(mx);
        ifac.resize(mx);
        fac[0]=1,ifac[0]=1;
        for(int i=1;i<mx;i++)fac[i]=fac[i-1]*i;
        ifac[mx-1]=fac[mx-1].inv();
        for(int i=mx-2;i>=0;i--)ifac[i]=ifac[i+1]*(i+1);
    }
    mint comb(lint b){
        if(init)build();
        if(a==0&&b==0)return 1;
        if((lint)a<b||a<0)return 0;
        return fac[a]*ifac[a-b]*ifac[b];
    }
    mint fact(){
        if(init)build();
        return fac[a];
    }
    mint fact_inv(){
        if(init)build();
        return ifac[a];
    }
    friend ostream& operator<<(ostream& lhs, const mint& rhs) noexcept {
        lhs << rhs.a;
        return lhs;
    }
    friend istream& operator>>(istream& lhs,mint& rhs) noexcept {
        lhs >> rhs.a;
        return lhs;
    }
    constexpr static u64 get_mod(){return MOD;}
};
vector<mint> mint::fac;
vector<mint> mint::ifac;
bool mint::init=1;

class UF{
    public:
    map<int,int> data;
    int sz;
	public:
    UF(int sz):sz(sz){}
    bool unite(int x,int y){
        x=root(x);y=root(y);
        if(x==y)return 0;
        if(data[x]>data[y])swap(x,y);
		data[x]+=data[y];
		data[y]=x;
		sz--;
        return 1;
    }
    inline int root(int x){
        if(!data.count(x))data[x]=-1;
        return data[x]<0?x:data[x]=root(data[x]);
    }
    inline bool same(int x, int y){return root(x)==root(y);}
    inline int size(){return sz;}
	inline int size(int x){return -data[root(x)];}
};

int main(){
    lint n,m;
    cin>>n>>m;
    assert(1<=n&&n<=1e3);
    assert(0<=m&&m<=min(n*(n-1)/2,15LL));
    vec a(m),b(m);
    rep(i,m){
        cin>>a[i]>>b[i];
        a[i]--;b[i]--;
    }
    mint ans=0;
    rep(i,1LL<<m){
        lint cnt1,cnt2=0,cnt=0;
        set<lint>s;
        bool f=0;
        unordered_map<lint,lint>ma;
        rep(j,m){
            if(i&(1LL<<j)){
                if(!ma.count(a[j]))ma[a[j]]=j;
                if(!ma.count(b[j]))ma[b[j]]=j;
                if(ma[a[j]]==-1||ma[b[j]]==-1){
                    f=1;
                }else if(ma[a[j]]==j&&ma[b[j]]==j){
                    ma[a[j]]=b[j];
                    ma[b[j]]=a[j];
                    cnt2++;
                }else if(ma[a[j]]==j){
                    ma[ma[b[j]]]=a[j];
                    ma[a[j]]=ma[b[j]];
                    ma[b[j]]=-1;
                }else if(ma[b[j]]==j){
                    ma[ma[a[j]]]=b[j];
                    ma[b[j]]=ma[a[j]];
                    ma[a[j]]=-1;
                }else{
                    ma[ma[a[j]]]=b[j];
                    ma[ma[b[j]]]=a[j];
                    ma[a[j]]=ma[b[j]]=-1;
                    cnt2--;
                }
                s.insert(a[j]);
                s.insert(b[j]);
                cnt++;
            }
        }
        if(f)continue;
        if(cnt2==0&&cnt){
            if(cnt%2)ans--;
            else ans++;
            continue;
        }
        cnt1=n-cnt;
        cnt2=s.size()-cnt;
        mint res=0;
        mint rev2=mint(1)/2;
        if(cnt==0){
            repi(k,3,n+1){
                res+=mint(n).comb(k)*mint(k-1).fact()*rev2;
            }
        }else{
            repi(k,cnt2+1,cnt1+1){
                res+=mint(cnt1-cnt2).comb(k-cnt2)*mint(k-1).fact()*rev2;
            }
            if(cnt>=2){
                res+=mint(cnt2-1).fact()*rev2;
            }
        }
        res*=mint(2).pow(cnt2);
        if(cnt%2)ans-=res;
        else ans+=res;
    }
    cout<<ans<<endl;
}
0