結果

問題 No.1086 桁和の桁和2
ユーザー ei1333333ei1333333
提出日時 2020-06-19 22:12:56
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 7,054 bytes
コンパイル時間 2,203 ms
コンパイル使用メモリ 210,920 KB
実行使用メモリ 14,016 KB
最終ジャッジ日時 2024-07-03 14:53:11
合計ジャッジ時間 7,278 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 WA -
testcase_03 AC 2 ms
6,940 KB
testcase_04 WA -
testcase_05 TLE -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

using namespace std;

using int64 = long long;
const int mod = (int) (1e9 + 7);
//const int mod = 998244353;

const int64 infll = (1LL << 60) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;


template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
  os << p.first << " " << p.second;
  return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
  is >> p.first >> p.second;
  return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
  for(int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
  for(T &in : v) is >> in;
  return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template< typename T = int64 >
vector< T > make_v(size_t a) {
  return vector< T >(a);
}

template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
  return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}

template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
  t = v;
}

template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
  for(auto &e : t) fill_v(e, v);
}

template< typename F >
struct FixPoint : F {
  FixPoint(F &&f) : F(forward< F >(f)) {}

  template< typename... Args >
  decltype(auto) operator()(Args &&... args) const {
    return F::operator()(*this, forward< Args >(args)...);
  }
};

template< typename F >
inline decltype(auto) MFP(F &&f) {
  return FixPoint< F >{forward< F >(f)};
}

template< int mod >
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }

  static int get_mod() { return mod; }
};

using modint = ModInt< mod >;

/**
 * @brief Square-Matrix(正方行列)
 */
template< class T, size_t N >
struct SquareMatrix {
  array< array< T, N >, N > A;

  SquareMatrix() = default;

  size_t size() { return N; }

  inline const array< T, N > &operator[](int k) const {
    return (A.at(k));
  }

  inline array< T, N > &operator[](int k) {
    return (A.at(k));
  }

  static SquareMatrix add_identity() {
    return SquareMatrix();
  }

  static SquareMatrix mul_identity() {
    SquareMatrix mat;
    for(size_t i = 0; i < N; i++) mat[i][i] = 1;
    return mat;
  }

  SquareMatrix &operator+=(const SquareMatrix &B) {
    for(size_t i = 0; i < N; i++) {
      for(size_t j = 0; j < N; j++) {
        (*this)[i][j] += B[i][j];
      }
    }
    return *this;
  }

  SquareMatrix &operator-=(const SquareMatrix &B) {
    for(size_t i = 0; i < N; i++) {
      for(size_t j = 0; j < N; j++) {
        (*this)[i][j] -= B[i][j];
      }
    }
    return *this;
  }

  SquareMatrix &operator*=(const SquareMatrix &B) {
    array< array< T, N >, N > C;
    for(size_t i = 0; i < N; i++) {
      for(size_t j = 0; j < N; j++) {
        for(size_t k = 0; k < N; k++) {
          C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
        }
      }
    }
    A.swap(C);
    return (*this);
  }

  SquareMatrix &operator^=(uint64_t k) {
    SquareMatrix B = SquareMatrix::mul_identity();
    while(k > 0) {
      if(k & 1) B *= *this;
      *this *= *this;
      k >>= 1LL;
    }
    A.swap(B.A);
    return *this;
  }

  SquareMatrix operator+(const SquareMatrix &B) const {
    return SquareMatrix(*this) += B;
  }

  SquareMatrix operator-(const SquareMatrix &B) const {
    return SquareMatrix(*this) -= B;
  }

  SquareMatrix operator*(const SquareMatrix &B) const {
    return SquareMatrix(*this) *= B;
  }

  SquareMatrix operator^(uint64_t k) const {
    return SquareMatrix(*this) ^= k;
  }

  friend ostream &operator<<(ostream &os, SquareMatrix &p) {
    for(int i = 0; i < N; i++) {
      os << "[";
      for(int j = 0; j < N; j++) {
        os << p[i][j] << (j + 1 == N ? "]\n" : ",");
      }
    }
    return os;
  }
};

int main() {
  int N;
  cin >> N;
  vector< int64 > L(N), R(N), D(N);
  cin >> L >> R >> D;


  SquareMatrix< modint, 10 > beet;
  for(int j = 0; j < 9; j++) {
    for(int k = 0; k < 10; k++) {
      beet[j][(j * 10 + k) % 9] += 1;
    }
  }
  for(int k = 0; k < 10; k++) { // {9,1,2,3,4,5,6,7,8,0}
    beet[9][k] += 1;
  }

  // 10^2
  auto solve = [&](int64 P) {
    auto tap = beet;
    tap ^= P;
    auto coef = make_v< modint >(9);
    for(int k = 0; k < 9; k++) coef[k] += tap[9][k];
    return coef;
  };

  auto dp = make_v< modint >(10);
  dp[9] = 1;
  for(int i = 0; i < N; i++) {
    vector< modint > coef(10);
    auto x = solve(R[i]);
    auto y = solve(L[i]);
    for(int j = 0; j < 9; j++) coef[j] += x[j];
    for(int j = 0; j < 9; j++) coef[j] -= y[j];
    coef[9] += 1;
    auto dp2 = make_v< modint >(10);
    for(int j = 0; j < 9; j++) {
      for(int k = 0; k < 10; k++) {
        dp2[j] += dp[(j * 10 + k) % 9] * coef[k];
      }
    }
    for(int j = 0; j < 9; j++) {
      dp2[j] += dp[9] * coef[j];
    }
    if(D[i] == 9) D[i] = 0;
    else if(D[i] == 0)D[i] = 9;
    for(int j = 0; j < 10; j++) {
      if(D[i] != j) dp2[j] = 0;
    }
    dp2.swap(dp);
  }
  cout << accumulate(begin(dp), end(dp), modint(0)) << "\n";
}
0