結果

問題 No.1086 桁和の桁和2
ユーザー LayCurseLayCurse
提出日時 2020-06-19 22:15:58
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 11,648 bytes
コンパイル時間 2,762 ms
コンパイル使用メモリ 219,592 KB
実行使用メモリ 16,616 KB
最終ジャッジ日時 2024-07-03 14:55:05
合計ジャッジ時間 7,908 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3 ms
16,616 KB
testcase_01 AC 3 ms
6,944 KB
testcase_02 AC 3 ms
7,500 KB
testcase_03 AC 3 ms
7,620 KB
testcase_04 AC 3 ms
6,944 KB
testcase_05 TLE -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
void *wmem;
char memarr[96000000];
template<class S, class T> inline S min_L(S a,T b){
  return a<=b?a:b;
}
struct Modint{
  unsigned val;
  Modint(){
    val=0;
  }
  Modint(int a){
    val = ord(a);
  }
  Modint(unsigned a){
    val = ord(a);
  }
  Modint(long long a){
    val = ord(a);
  }
  Modint(unsigned long long a){
    val = ord(a);
  }
  inline unsigned ord(unsigned a){
    return a%MD;
  }
  inline unsigned ord(int a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned ord(unsigned long long a){
    return a%MD;
  }
  inline unsigned ord(long long a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned get(){
    return val;
  }
  inline Modint &operator+=(Modint a){
    val += a.val;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator-=(Modint a){
    if(val < a.val){
      val = val + MD - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  inline Modint &operator*=(Modint a){
    val = ((unsigned long long)val*a.val)%MD;
    return *this;
  }
  inline Modint &operator/=(Modint a){
    return *this *= a.inverse();
  }
  inline Modint operator+(Modint a){
    return Modint(*this)+=a;
  }
  inline Modint operator-(Modint a){
    return Modint(*this)-=a;
  }
  inline Modint operator*(Modint a){
    return Modint(*this)*=a;
  }
  inline Modint operator/(Modint a){
    return Modint(*this)/=a;
  }
  inline Modint operator+(int a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(int a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(int a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(int a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator+(long long a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(long long a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(long long a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(long long a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator-(void){
    Modint res;
    if(val){
      res.val=MD-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  inline operator bool(void){
    return val!=0;
  }
  inline operator int(void){
    return get();
  }
  inline operator long long(void){
    return get();
  }
  inline Modint inverse(){
    int a = val;
    int b = MD;
    int u = 1;
    int v = 0;
    int t;
    Modint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += MD;
    }
    res.val = u;
    return res;
  }
  inline Modint pw(unsigned long long b){
    Modint a(*this);
    Modint res;
    res.val = 1;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  inline bool operator==(int a){
    return ord(a)==val;
  }
  inline bool operator!=(int a){
    return ord(a)!=val;
  }
}
;
inline Modint operator+(int a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
  return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
  return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
  static char buf[1048576];
  static int s = 1048576;
  static int e = 1048576;
  if(s == e && e == 1048576){
    e = fread_unlocked(buf, 1, 1048576, stdin);
    s = 0;
  }
  if(s == e){
    return EOF;
  }
  return buf[s++];
}
inline void rd(int &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = my_getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = my_getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
inline void rd(long long &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = my_getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = my_getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
struct MY_WRITER{
  char buf[1048576];
  int s;
  int e;
  MY_WRITER(){
    s = 0;
    e = 1048576;
  }
  ~MY_WRITER(){
    if(s){
      fwrite_unlocked(buf, 1, s, stdout);
    }
  }
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
  if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
    fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
    MY_WRITER_VAR.s = 0;
  }
  MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
  my_putchar_unlocked(a);
}
inline void wt_L(int x){
  int s=0;
  int m=0;
  char f[10];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(Modint x){
  int i;
  i = (int)x;
  wt_L(i);
}
template<class T> struct Matrix{
  int r;
  int c;
  int mem;
  T *dat;
  Matrix(){
    r=c=mem = 0;
  }
  Matrix(const int rr, const int cc){
    if(rr == 0 || cc == 0){
      r = c = 0;
    }
    else{
      r = rr;
      c = cc;
    }
    mem = r * c;
    if(mem > 0){
      dat = new T[mem];
    }
  }
  Matrix(const Matrix<T> &a){
    int i;
    r = a.r;
    c = a.c;
    mem = r * c;
    dat = new T[mem];
    for(i=(0);i<(mem);i++){
      dat[i] = a.dat[i];
    }
  }
  ~Matrix(){
    if(mem){
      delete [] dat;
    }
  }
  void changeSize(const int rr, const int cc){
    if(rr==0 || cc==0){
      r = c = 0;
    }
    else{
      r = rr;
      c = cc;
    }
    if(mem < r*c){
      if(mem){
        delete [] dat;
      }
      mem = r*c;
      dat = new T[mem];
    }
  }
  Matrix<T>& operator=(const Matrix<T> &a){
    int i;
    int j;
    r = a.r;
    c = a.c;
    j = r * c;
    changeSize(r,c);
    for(i=(0);i<(j);i++){
      dat[i] = a.dat[i];
    }
    return *this;
  }
  Matrix<T>& operator=(const int a){
    int i;
    int j;
    j = r * c;
    for(i=(0);i<(j);i++){
      dat[i] = 0;
    }
    j =min_L(r, c);
    for(i=(0);i<(j);i++){
      dat[i*c+i] = a;
    }
    return *this;
  }
  Matrix<T>& operator+=(const Matrix<T> &a){
    int i;
    int j;
    if(r==0 || r!=a.r || c!=a.c){
      changeSize(0,0);
      return *this;
    }
    j = r*c;
    for(i=(0);i<(j);i++){
      dat[i] += a.dat[i];
    }
    return *this;
  }
  Matrix<T> operator+(const Matrix<T> &a){
    return Matrix<T>(*this) += a;
  }
  Matrix<T>& operator-=(const Matrix<T> &a){
    int i;
    int j;
    if(r==0 || r!=a.r || c!=a.c){
      changeSize(0,0);
      return *this;
    }
    j = r*c;
    for(i=(0);i<(j);i++){
      dat[i] -= a.dat[i];
    }
    return *this;
  }
  Matrix<T> operator-(const Matrix<T> &a){
    return Matrix<T>(*this) -= a;
  }
  Matrix<T>& operator*=(const Matrix<T> &a){
    int i;
    int j;
    int k;
    int x;
    T *m;
    if(r==0 || c!=a.r){
      changeSize(0,0);
      return *this;
    }
    m = (T*)wmem;
    x = r * a.c;
    for(i=(0);i<(x);i++){
      m[i] = 0;
    }
    for(i=(0);i<(r);i++){
      for(k=(0);k<(c);k++){
        for(j=(0);j<(a.c);j++){
          m[i*a.c+j] += dat[i*c+k] * a.dat[k*a.c+j];
        }
      }
    }
    changeSize(r, a.c);
    for(i=(0);i<(x);i++){
      dat[i] = m[i];
    }
    return *this;
  }
  Matrix<T> operator*(const Matrix<T> &a){
    return Matrix<T>(*this) *= a;
  }
  Matrix<T>& operator*=(const int a){
    int i;
    int j;
    j = r * c;
    for(i=(0);i<(j);i++){
      dat[i] *= a;
    }
    return *this;
  }
  Matrix<T>& operator*=(const long long a){
    int i;
    int j;
    j = r * c;
    for(i=(0);i<(j);i++){
      dat[i] *= a;
    }
    return *this;
  }
  Matrix<T>& operator*=(const double a){
    int i;
    int j;
    j = r * c;
    for(i=(0);i<(j);i++){
      dat[i] *= a;
    }
    return *this;
  }
  inline T* operator[](const int a){
    return dat+a*c;
  }
}
;
template<class T> Matrix<T> operator*(const int a, const Matrix<T> &b){
  return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const Matrix<T> &b, const int a){
  return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const long long a, const Matrix<T> &b){
  return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const Matrix<T> &b, const long long a){
  return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const double a, const Matrix<T> &b){
  return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const Matrix<T> &b, const double a){
  return Matrix<T>(b)*=a;
}
template<class T, class S> inline Matrix<T> pow_L(Matrix<T> a, S b){
  int i;
  int j;
  Matrix<T> res;
  res.changeSize(a.r, a.c);
  res = 1;
  while(b){
    if(b&1){
      res *= a;
    }
    b >>= 1;
    a *= a;
  }
  return res;
}
template<class T, class S> inline T pow_L(T a, S b){
  T res = 1;
  res = 1;
  for(;;){
    if(b&1){
      res *= a;
    }
    b >>= 1;
    if(b==0){
      break;
    }
    a *= a;
  }
  return res;
}
inline double pow_L(double a, double b){
  return pow(a,b);
}
template<class S, class T> inline S moddw_L(S a, const T b){
  a %= b;
  if(a < 0){
    a += b;
  }
  return a;
}
int N;
int D[100000];
long long L[100000];
long long R[100000];
Matrix<Modint> mt(9,9);
Matrix<Modint> pw(9,9);
Modint solve(long long r, int d){
  if(d==0){
    return 1;
  }
  pw =(pow_L(mt,r));
  if(d==9){
    return pw[0][0] - 1;
  }
  return pw[0][d];
}
int main(){
  int i;
  wmem = memarr;
  int d;
  Modint res = 1;
  Modint tmp;
  rd(N);
  {
    int Lj4PdHRW;
    for(Lj4PdHRW=(0);Lj4PdHRW<(N);Lj4PdHRW++){
      rd(L[Lj4PdHRW]);
    }
  }
  {
    int e98WHCEY;
    for(e98WHCEY=(0);e98WHCEY<(N);e98WHCEY++){
      rd(R[e98WHCEY]);
    }
  }
  {
    int FmcKpFmN;
    for(FmcKpFmN=(0);FmcKpFmN<(N);FmcKpFmN++){
      rd(D[FmcKpFmN]);
    }
  }
  for(i=(0);i<(9);i++){
    int j;
    for(j=(0);j<(9);j++){
      mt[i][j] = 0;
    }
  }
  for(i=(0);i<(9);i++){
    int j;
    for(j=(0);j<(10);j++){
      mt[i][(i+j)%9] += 1;
    }
  }
  for(i=(0);i<(N);i++){
    tmp = 0;
    if(i==0 && D[i]==0){
      tmp += res;
    }
    if(i!=0 && D[i]==D[i-1]){
      tmp += res;
    }
    if(D[i]){
      if(i){
        d =(moddw_L((D[i] -D[i-1]),9));
      }
      else{
        d =(moddw_L((D[i] -0),9));
      }
      if(d==0){
        d = 9;
      }
      tmp += res * (solve(R[i], d) - solve(L[i], d));
    }
    res = tmp;
  }
  wt_L(res);
  wt_L('\n');
  return 0;
}
// cLay varsion 20200509-1

// --- original code ---
// int N, D[1d5];
// ll L[1d5], R[1d5];
// Matrix<Modint> mt(9,9), pw(9,9);
// 
// Modint solve(ll r, int d){
//   if(d==0) return 1;
//   pw = mt ** r;
//   if(d==9) return pw[0][0] - 1;
//   return pw[0][d];
// }
// 
// {
//   int d;
//   Modint res = 1, tmp;
//   rd(N,L(N),R(N),D(N));
// 
//   rep(i,9) rep(j,9) mt[i][j] = 0;
//   rep(i,9) rep(j,10) mt[i][(i+j)%9] += 1;
// 
//   rep(i,N){
//     tmp = 0;
//     if(i==0 && D[i]==0) tmp += res;
//     if(i!=0 && D[i]==D[i-1]) tmp += res;
//     if(D[i]){
//       d = (D[i] - if[i, D[i-1], 0]) %% 9;
//       if(d==0) d = 9;
//       tmp += res * (solve(R[i], d) - solve(L[i], d));
//     }
//     res = tmp;
//   }
//   wt(res);
// }
0